TY - JOUR A1 - Grimm, Oliver A1 - Weber, Heike A1 - Kittel-Schneider, Sarah A1 - Kranz, Thorsten M. A1 - Jacob, Christian P. A1 - Lesch, Klaus-Peter A1 - Reif, Andreas T1 - Impulsivity and Venturesomeness in an Adult ADHD Sample: Relation to Personality, Comorbidity, and Polygenic Risk JF - Frontiers in Psychiatry N2 - While impulsivity is a basic feature of attention-deficit/hyperactivity disorder (ADHD), no study explored the effect of different components of the Impulsiveness (Imp) and Venturesomeness (Vent) scale (IV7) on psychiatric comorbidities and an ADHD polygenic risk score (PRS). We used the IV7 self-report scale in an adult ADHD sample of 903 patients, 70% suffering from additional comorbid disorders, and in a subsample of 435 genotyped patients. Venturesomeness, unlike immediate Impulsivity, is not specific to ADHD. We consequently analyzed the influence of Imp and Vent also in the context of a PRS on psychiatric comorbidities of ADHD. Vent shows a distinctly different distribution of comorbidities, e.g., less anxiety and depression. PRS showed no effect on different ADHD comorbidities, but correlated with childhood hyperactivity. In a complementary analysis using principal component analysis with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition ADHD criteria, revised NEO Personality Inventory, Imp, Vent, and PRS, we identified three ADHD subtypes. These are an impulsive–neurotic type, an adventurous–hyperactive type with a stronger genetic component, and an anxious–inattentive type. Our study thus suggests the importance of adventurousness and the differential consideration of impulsivity in ADHD. The genetic risk is distributed differently between these subtypes, which underlines the importance of clinically motivated subtyping. Impulsivity subtyping might give insights into the organization of comorbid disorders in ADHD and different genetic background. KW - impulsivity KW - ADHD KW - polygenic risk score KW - venturesomeness KW - substance abuse disorder KW - attention KW - hyperactivity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219751 SN - 1664-0640 VL - 11 ER - TY - JOUR A1 - Fernàndez-Castillo, Noèlia A1 - Cabana-Domínguez, Judit A1 - Kappel, Djenifer B. A1 - Torrico, Bàrbara A1 - Weber, Heike A1 - Lesch, Klaus-Peter A1 - Lao, Oscar A1 - Reif, Andreas A1 - Cormand, Bru T1 - Exploring the contribution to ADHD of genes involved in Mendelian disorders presenting with hyperactivity and/or inattention JF - Genes N2 - Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders. KW - ADHD KW - rare mendelian disorders KW - genetic variants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252346 SN - 2073-4425 VL - 13 IS - 1 ER - TY - JOUR A1 - Jansch, Charline A1 - Günther, Katharina A1 - Waider, Jonas A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Kollert, Sina A1 - Svirin, Evgeniy A1 - Pühringer, Dirk A1 - Kwok, Chee Keong A1 - Ullmann, Reinhard A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Haaf, Thomas A1 - Edenhofer, Frank A1 - Lesch, Klaus-Peter T1 - Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3 JF - Stem Cell Research N2 - Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner. KW - ADHD KW - SLC2A3 KW - induced pluripotent stem cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176654 VL - 28 ER - TY - JOUR A1 - Brevik, Erlend J A1 - van Donkelaar, Marjolein M. J. A1 - Weber, Heike A1 - Sánchez-Mora, Cristina A1 - Jacob, Christian A1 - Rivero, Olga A1 - Kittel-Schneider, Sarah A1 - Garcia-martinez, Iris A1 - Aebi, Marcel A1 - van Hulzen, Kimm A1 - Cormand, Bru A1 - Ramos-Quiroga, Josep A A1 - Lesch, Klaus-Peter A1 - Reif, Andreas A1 - Ribases, Marta A1 - Franke, Barbara A1 - Posserud, Maj-Britt A1 - Johansson, Stefan A1 - Lundervold, Astri J. A1 - Haavik, Jan A1 - Zayats, Tetyana T1 - Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder JF - American Journal of Medical Genetics Part B-Neuropsychiatric Genetics N2 - Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. KW - Large multicenter ADHD KW - Antisocial behavior KW - Diagnostic approach KW - Rating scale KW - Gene KW - Deficit/hyperactivity disorder KW - Susceptibility loci KW - Conduct disorder KW - Association KW - Adult KW - ADHD KW - Aggression KW - GWAS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188116 VL - 171B IS - 5 ER - TY - JOUR A1 - Schäfer, Nadine A1 - Friedrich, Maximilian A1 - Jørgensen, Morten Egevang A1 - Kollert, Sina A1 - Koepsell, Hermann A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter A1 - Geiger, Dietmar A1 - Döring, Frank T1 - Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD JF - PLoS ONE N2 - Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na\(^{+}\) currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers. KW - Xenopus laevis oocytes KW - ADHD KW - glucose KW - cell membranes KW - membrane proteins KW - membrane potential KW - crystal structure KW - amino acid analysis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176495 VL - 13 IS - 10 ER -