TY - JOUR A1 - Klein, Dennis A1 - Groh, Janos A1 - Yuan, Xidi A1 - Berve, Kristina A1 - Stassart, Ruth A1 - Fledrich, Robert A1 - Martini, Rudolf T1 - Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A JF - Glia N2 - We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients. KW - colony stimulating factor 1 KW - Schwann cell differentiation KW - neuroinflammation KW - macrophage KW - inherited peripheral neuropathy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318714 VL - 70 IS - 6 SP - 1100 EP - 1116 ER - TY - JOUR A1 - Groh, Janos A1 - Berve, Kristina A1 - Martini, Rudolf T1 - Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset JF - Brain Communications N2 - Targeting neuroinflammation in models for infantile and juvenile forms of neuronal ceroid lipofuscinosis (NCL, CLN disease) with the clinically established immunomodulators fingolimod and teriflunomide significantly attenuates the neurodegenerative phenotype when applied preventively, i.e. before the development of substantial neural damage and clinical symptoms. Here, we show that in a mouse model for the early onset and rapidly progressing CLN1 form, more complex clinical phenotypes like disturbed motor coordination and impaired visual acuity are also ameliorated by immunomodulation. Moreover, we show that the disease outcome can be attenuated even when fingolimod and teriflunomide treatment starts after disease onset, i.e. when neurodegeneration is ongoing and clinical symptoms are detectable. In detail, treatment with either drug led to a reduction in T-cell numbers and microgliosis in the CNS, although not to the same extent as upon preventive treatment. Pharmacological immunomodulation was accompanied by a reduction of axonal damage, neuron loss and astrogliosis in the retinotectal system and by reduced brain atrophy. Accordingly, the frequency of myoclonic jerks and disturbed motor coordination were attenuated. Overall, disease alleviation was remarkably substantial upon therapeutic treatment with both drugs, although less robust than upon preventive treatment. To test the relevance of putative immune-independent mechanisms of action in this model, we treated CLN1 mice lacking mature T- and B-lymphocytes. Immunodeficient CLN1 mice showed, as previously reported, an improved neurological phenotype in comparison with genuine CLN1 mice which could not be further alleviated by either of the drugs, reflecting a predominantly immune-related therapeutic mechanism of action. The present study supports and strengthens our previous view that repurposing clinically approved immunomodulators may alleviate the course of CLN1 disease in human patients, even though diagnosis usually occurs when symptoms have already emerged. KW - attenuation of disease KW - T-lymphocytes KW - immunomodulation KW - infantile neuronal ceroid lipofuscinosis KW - neurodegeneration KW - neuroinflammation KW - preventive treatment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260167 VL - 3 IS - 2 ER - TY - JOUR A1 - Berve, Kristina A1 - West, Brian L. A1 - Martini, Rudolf A1 - Groh, Janos T1 - Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice JF - Journal of Neuroinflammation N2 - Background The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1\(^{-/-}\)) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. Methods We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. Results We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1\(^{-/-}\) mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. Conclusions Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies. KW - Neuronal ceroid lipofuscinosis KW - Microglia KW - Macrophages KW - T lymphocytes KW - Neurodegeneration KW - Axon degeneration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230234 VL - 17 ER -