TY - JOUR A1 - Dekant, Raphael A1 - Langer, Michael A1 - Lupp, Maria A1 - Adaku Chilaka, Cynthia A1 - Mally, Angela T1 - In vitro and in vivo analysis of ochratoxin A-derived glucuronides and mercapturic acids as biomarkers of exposure JF - Toxins N2 - Ochratoxin A (OTA) is a widespread food contaminant, with exposure estimated to range from 0.64 to 17.79 ng/kg body weight (bw) for average consumers and from 2.40 to 51.69 ng/kg bw per day for high consumers. Current exposure estimates are, however, associated with considerable uncertainty. While biomarker-based approaches may contribute to improved exposure assessment, there is yet insufficient data on urinary metabolites of OTA and their relation to external dose to allow reliable estimates of daily intake. This study was designed to assess potential species differences in phase II biotransformation in vitro and to establish a correlation between urinary OTA-derived glucuronides and mercapturic acids and external exposure in rats in vivo. In vitro analyses of OTA metabolism using the liver S9 of rats, humans, rabbits and minipigs confirmed formation of an OTA glucuronide but provided no evidence for the formation of OTA-derived mercapturic acids to support their use as biomarkers. Similarly, OTA-derived mercapturic acids were not detected in urine of rats repeatedly dosed with OTA, while indirect analysis using enzymatic hydrolysis of the urine samples prior to LC–MS/MS established a linear relationship between urinary glucuronide excretion and OTA exposure. These results support OTA-derived glucuronides but not mercapturic acids as metabolites suitable for biomonitoring. KW - ochratoxin A KW - biomarker of exposure KW - glucuronide KW - mercapturic acid KW - mycotoxin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245146 SN - 2072-6651 VL - 13 IS - 8 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER -