TY - JOUR A1 - Wohlfarth, Carolin A1 - Schmitteckert, Stefanie A1 - Härtle, Janina D. A1 - Houghton, Lesley A. A1 - Dweep, Harsh A1 - Fortea, Marina A1 - Assadi, Ghazaleh A1 - Braun, Alexander A1 - Mederer, Tanja A1 - Pöhner, Sarina A1 - Becker, Philip P. A1 - Fischer, Christine A1 - Granzow, Martin A1 - Mönnikes, Hubert A1 - Mayer, Emeran A. A1 - Sayuk, Gregory A1 - Boeckxstaens, Guy A1 - Wouters, Mira M. A1 - Simrén, Magnus A1 - Lindberg, Greger A1 - Ohlsson, Bodil A1 - Schmidt, Peter Thelin A1 - Dlugosz, Aldona A1 - Agreus, Lars A1 - Andreasson, Anna A1 - D'Amato, Mauro A1 - Burwinkel, Barbara A1 - Bermejo, Justo Lorenzo A1 - Röth, Ralph A1 - Lasitschka, Felix A1 - Vicario, Maria A1 - Metzger, Marco A1 - Santos, Javier A1 - Rappold, Gudrun A. A1 - Martinez, Cristina A1 - Niesler, Beate T1 - miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome JF - Scientific Reports N2 - Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene \(HTR4\) to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms \({HTR4b/i}\) and putatively impairs \(HTR4\) expression. Subsequent miRNA profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. \(In\) \(vitro\) assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform \(HTR4b\_2\) lacking two of the three miRNA binding sites escapes miR-16/103/107 regulationin SNP carriers. We provide the first evidence that \(HTR4\) expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or bydiminished levels of miR-16 and miR-103 suggesting that \(HTR4\) might be involved in the development of IBS-D. KW - Medicine KW - Gene regulation KW - Irritable bowel syndrome Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173478 VL - 7 ER - TY - JOUR A1 - Weich, Alexander A1 - Rogoll, Dorothee A1 - Gawlas, Sophia A1 - Mayer, Lars A1 - Weich, Wolfgang A1 - Pongracz, Judit A1 - Kudlich, Theodor A1 - Meining, Alexander A1 - Scheurlen, Michael T1 - Wnt/β-catenin signaling regulates CXCR4 expression and [\(^{68}\)Ga] Pentixafor internalization in neuroendocrine tumor cells JF - Diagnostics N2 - Loss of Somatostatin Receptor 2 (SSTR2) expression and rising CXC Chemokine Receptor Type 4 (CXCR4) expression are associated with dedifferentiation in neuroendocrine tumors (NET). In NET, CXCR4 expression is associated with enhanced metastatic and invasive potential and worse prognosis but might be a theragnostic target. Likewise, activation of Wnt/β-catenin signaling may promote a more aggressive phenotype in NET. We hypothesized an interaction of the Wnt/β-catenin pathway with CXCR4 expression and function in NET. The NET cell lines BON-1, QGP-1, and MS-18 were exposed to Wnt inhibitors (5-aza-CdR, quercetin, and niclosamide) or the Wnt activator LiCl. The expressions of Wnt pathway genes and of CXCR4 were studied by qRT-PCR, Western blot, and immunohistochemistry. The effects of Wnt modulators on uptake of the CXCR4 ligand [\(^{68}\)Ga] Pentixafor were measured. The Wnt activator LiCl induced upregulation of CXCR4 and Wnt target gene expression. Treatment with the Wnt inhibitors had opposite effects. LiCl significantly increased [\(^{68}\)Ga] Pentixafor uptake, while treatment with Wnt inhibitors decreased radiopeptide uptake. Wnt pathway modulation influences CXCR4 expression and function in NET cell lines. Wnt modulation might be a tool to enhance the efficacy of CXCR4-directed therapies in NET or to inhibit CXCR4-dependent proliferative signaling. The underlying mechanisms for the interaction of the Wnt pathway with CXCR4 expression and function have yet to be clarified. KW - neuroendocrine tumor KW - NET KW - Wnt KW - β-catenin KW - CXCR4 KW - [\(^{68}\)Ga] Pentixafor KW - BON-1 KW - QGP-1 KW - MS-18 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228914 SN - 2075-4418 VL - 11 IS - 2 ER -