TY - JOUR A1 - Salker, Madhuri S. A1 - Singh, Yogesh A1 - Zeng, Ni A1 - Chen, Hong A1 - Zhang, Shaqiu A1 - Umbach, Anja T. A1 - Fakhri, Hajar A1 - Kohlhofer, Ursula A1 - Quintanilla-Martinez, Leticia A1 - Durairaj, Ruban R. Peter A1 - Barros, Flavio S. V. A1 - Vrljicak, Pavle A1 - Ott, Sascha A1 - Brucker, Sara Y. A1 - Wallwiener, Diethelm A1 - Madunić, Ivana Vrhovac A1 - Breljak, Davorka A1 - Sabolić, Ivan A1 - Koepsell, Hermann A1 - Brosens, Jan J. A1 - Lang, Florian T1 - Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy JF - Scientific Reports N2 - Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{−/−}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{−/−}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome. KW - biology KW - embryology KW - intrauterine growth KW - paediatric research Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173814 VL - 7 ER -