TY - JOUR A1 - Karl, I. A1 - Jossberger-Werner, M. A1 - Schmidt, N. A1 - Horn, S. A1 - Goebeler, M. A1 - Leverkus, M. A1 - Wajant, H. A1 - Giner, T. T1 - TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis JF - Cell Death & Disease N2 - The relevance of the adaptor protein TNF receptor-associated factor 2 (TRAF2) for signal transduction of the death receptor tumour necrosis factor receptor1 (TNFR1) is well-established. The role of TRAF2 for signalling by CD95 and the TNF-related apoptosis inducing ligand (TRAIL) DRs, however, is only poorly understood. Here, we observed that knockdown (KD) of TRAF2 sensitised keratinocytes for TRAIL- and CD95L-induced apoptosis. Interestingly, while cell death was fully blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) in control cells, TRAF2-depleted keratinocytes were only partly rescued from TRAIL- and CD95L-induced cell death. In line with the idea that the only partially protective effect of zVAD-fmk on TRAIL- and CD95L-treated TRAF2-depleted keratinocytes is due to the induction of necroptosis, combined treatment with zVAD-fmk and the receptor interacting protein 1 (RIP1) inhibitor necrostatin-1 fully rescued these cells. To better understand the impact of TRAF2 levels on RIP1- and RIP3-dependent necroptosis and RIP3-independent apoptosis, we performed experiments in HeLa cells that lack endogenous RIP3 and HeLa cells stably transfected with RIP3. HeLa cells, in which necroptosis has no role, were markedly sensitised to TRAIL-induced caspase-dependent apoptosis by TRAF2 KD. In RIP3-expressing HeLa transfectants, however, KD of TRAF2 also strongly sensitised for TRAIL-induced necroptosis. Noteworthy, priming of keratinocytes with soluble TWEAK, which depletes the cytosolic pool of TRAF2-containing protein complexes, resulted in strong sensitisation for TRAIL-induced necroptosis but had only a very limited effect on TRAIL-induced apoptosis. The necroptotic TRAIL response was not dependent on endogenously produced TNF and TNFR signalling, since blocking TNF by TNFR2-Fc or anti-TNFα had no effect on necroptosis induction. Taken together, we identified TRAF2 not only as a negative regulator of DR-induced apoptosis but in particular also as an antagonist of TRAIL- and CD95L-induced necroptosis. KW - Nekrose KW - Apoptosis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119166 SN - 2041-4889 VL - 5 ER - TY - JOUR A1 - Viljur, Mari‐Liis A1 - Abella, Scott R. A1 - Adámek, Martin A1 - Alencar, Janderson Batista Rodrigues A1 - Barber, Nicholas A. A1 - Beudert, Burkhard A1 - Burkle, Laura A. A1 - Cagnolo, Luciano A1 - Campos, Brent R. A1 - Chao, Anne A1 - Chergui, Brahim A1 - Choi, Chang‐Yong A1 - Cleary, Daniel F. R. A1 - Davis, Thomas Seth A1 - Dechnik‐Vázquez, Yanus A. A1 - Downing, William M. A1 - Fuentes‐Ramirez, Andrés A1 - Gandhi, Kamal J. K. A1 - Gehring, Catherine A1 - Georgiev, Kostadin B. A1 - Gimbutas, Mark A1 - Gongalsky, Konstantin B. A1 - Gorbunova, Anastasiya Y. A1 - Greenberg, Cathryn H. A1 - Hylander, Kristoffer A1 - Jules, Erik S. A1 - Korobushkin, Daniil I. A1 - Köster, Kajar A1 - Kurth, Valerie A1 - Lanham, Joseph Drew A1 - Lazarina, Maria A1 - Leverkus, Alexandro B. A1 - Lindenmayer, David A1 - Marra, Daniel Magnabosco A1 - Martín‐Pinto, Pablo A1 - Meave, Jorge A. A1 - Moretti, Marco A1 - Nam, Hyun‐Young A1 - Obrist, Martin K. A1 - Petanidou, Theodora A1 - Pons, Pere A1 - Potts, Simon G. A1 - Rapoport, Irina B. A1 - Rhoades, Paul R. A1 - Richter, Clark A1 - Saifutdinov, Ruslan A. A1 - Sanders, Nathan J. A1 - Santos, Xavier A1 - Steel, Zachary A1 - Tavella, Julia A1 - Wendenburg, Clara A1 - Wermelinger, Beat A1 - Zaitsev, Andrey S. A1 - Thorn, Simon T1 - The effect of natural disturbances on forest biodiversity: an ecological synthesis JF - Biological Reviews N2 - Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human‐induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land‐use change. Conversely, the suppression of natural disturbances threatens disturbance‐dependent biota. Using a meta‐analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α‐diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground‐dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α‐diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta‐analysis by applying a unified diversity concept based on Hill numbers to estimate α‐diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity–disturbance relationships are shaped by species relative abundances. Our synthesis of α‐diversity was extended by a synthesis of disturbance‐induced change in species assemblages, and revealed that disturbance changes the β‐diversity of multiple taxonomic groups, including some groups that were not affected at the α‐diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α‐diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes. KW - natural disturbance KW - diversity–disturbance relationship KW - disturbance severity KW - disturbance extent KW - intermediate disturbance hypothesis KW - forest communities KW - α‐diversity KW - β‐diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287168 VL - 97 IS - 5 SP - 1930 EP - 1947 ER -