TY - JOUR A1 - Davis, Lea K. A1 - Yu, Dongmei A1 - Keenan, Clare L. A1 - Gamazon, Eric R. A1 - Konkashbaev, Anuar I. A1 - Derks, Eske M. A1 - Neale, Benjamin M. A1 - Yang, Jian A1 - Lee, S. Hong A1 - Evans, Patrick A1 - Barr, Cathy L. A1 - Bellodi, Laura A1 - Benarroch, Fortu A1 - Berrio, Gabriel Bedoya A1 - Bienvenu, Oscar J. A1 - Bloch, Michael H. A1 - Blom, Rianne M. A1 - Bruun, Ruth D. A1 - Budman, Cathy L. A1 - Camarena, Beatriz A1 - Campbell, Desmond A1 - Cappi, Carolina A1 - Cardona Silgado, Julio C. A1 - Cath, Danielle C. A1 - Cavallini, Maria C. A1 - Chavira, Denise A. A1 - Chouinard, Sylvian A1 - Conti, David V. A1 - Cook, Edwin H. A1 - Coric, Vladimir A1 - Cullen, Bernadette A. A1 - Deforce, Dieter A1 - Delorme, Richard A1 - Dion, Yves A1 - Edlund, Christopher K. A1 - Egberts, Karin A1 - Falkai, Peter A1 - Fernandez, Thomas V. A1 - Gallagher, Patience J. A1 - Garrido, Helena A1 - Geller, Daniel A1 - Girard, Simon L. A1 - Grabe, Hans J. A1 - Grados, Marco A. A1 - Greenberg, Benjamin D. A1 - Gross-Tsur, Varda A1 - Haddad, Stephen A1 - Heiman, Gary A. A1 - Hemmings, Sian M. J. A1 - Hounie, Ana G. A1 - Illmann, Cornelia A1 - Jankovic, Joseph A1 - Jenike, Micheal A. A1 - Kennedy, James L. A1 - King, Robert A. A1 - Kremeyer, Barbara A1 - Kurlan, Roger A1 - Lanzagorta, Nuria A1 - Leboyer, Marion A1 - Leckman, James F. A1 - Lennertz, Leonhard A1 - Liu, Chunyu A1 - Lochner, Christine A1 - Lowe, Thomas L. A1 - Macciardi, Fabio A1 - McCracken, James T. A1 - McGrath, Lauren M. A1 - Restrepo, Sandra C. Mesa A1 - Moessner, Rainald A1 - Morgan, Jubel A1 - Muller, Heike A1 - Murphy, Dennis L. A1 - Naarden, Allan L. A1 - Ochoa, William Cornejo A1 - Ophoff, Roel A. A1 - Osiecki, Lisa A1 - Pakstis, Andrew J. A1 - Pato, Michele T. A1 - Pato, Carlos N. A1 - Piacentini, John A1 - Pittenger, Christopher A1 - Pollak, Yehunda A1 - Rauch, Scott L. A1 - Renner, Tobias J. A1 - Reus, Victor I. A1 - Richter, Margaret A. A1 - Riddle, Mark A. A1 - Robertson, Mary M. A1 - Romero, Roxana A1 - Rosàrio, Maria C. A1 - Rosenberg, David A1 - Rouleau, Guy A. A1 - Ruhrmann, Stephan A1 - Ruiz-Linares, Andreas A1 - Sampaio, Aline S. A1 - Samuels, Jack A1 - Sandor, Paul A1 - Sheppard, Broke A1 - Singer, Harvey S. A1 - Smit, Jan H. A1 - Stein, Dan J. A1 - Strengman, E. A1 - Tischfield, Jay A. A1 - Valencia Duarte, Ana V. A1 - Vallada, Homero A1 - Van Nieuwerburgh, Flip A1 - Veenstra-VanderWeele, Jeremy A1 - Walitza, Susanne A1 - Wang, Ying A1 - Wendland, Jens R. A1 - Westenberg, Herman G. M. A1 - Shugart, Yin Yao A1 - Miguel, Euripedes C. A1 - McMahon, William A1 - Wagner, Michael A1 - Nicolini, Humberto A1 - Posthuma, Danielle A1 - Hanna, Gregory L. A1 - Heutink, Peter A1 - Denys, Damiaan A1 - Arnold, Paul D. A1 - Oostra, Ben A. A1 - Nestadt, Gerald A1 - Freimer, Nelson B. A1 - Pauls, David L. A1 - Wray, Naomi R. A1 - Stewart, S. Evelyn A1 - Mathews, Carol A. A1 - Knowles, James A. A1 - Cox, Nancy J. A1 - Scharf, Jeremiah M. T1 - Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture JF - PLoS Genetics N2 - The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures. KW - TIC disorders KW - missing heritability KW - complex diseases KW - neuropsychiatric disorders KW - common SNPS KW - gilles KW - family KW - brain KW - expression KW - autism Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127377 SN - 1553-7390 VL - 9 IS - 10 ER - TY - JOUR A1 - Li, Cong A1 - Deng, Xiaobing A1 - Xie, Xiaowen A1 - Liu, Ying A1 - Friedmann Angeli, José Pedro A1 - Lai, Luhua T1 - Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy JF - Frontiers in Pharmacology N2 - The anti-oxidative enzyme, glutathione peroxidase 4 (GPX4), helps to promote inflammation resolution by eliminating oxidative species produced by the arachidonic acid (AA) metabolic network. Up-regulating its activity has been proposed as a promising strategy for inflammation intervention. In the present study, we aimed to study the effect of GPX4 activator on the AA metabolic network and inflammation related pathways. Using combined computational and experimental screen, we identified a novel compound that can activate the enzyme activity of GPX4 by more than two folds. We further assessed its potential in a series of cellular assays where GPX4 was demonstrated to play a regulatory role. We are able to show that GPX4 activation suppressed inflammatory conditions such as oxidation of AA and NF-κB pathway activation. We further demonstrated that this GPX4 activator can decrease the intracellular ROS level and suppress ferroptosis. Our study suggests that GPX4 activators can be developed as anti-inflammatory or cyto-protective agent in lipid-peroxidation-mediated diseases. KW - arachidonic acid metabolic network KW - GPX4 KW - enzyme activator KW - allosterism KW - drug discovery KW - anti-inflammatory KW - ferroptosis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195985 SN - 1663-9812 VL - 9 IS - 1120 ER - TY - JOUR A1 - Song, Ning-Ning A1 - Jia, Yun-Fang A1 - Zhang, Lei A1 - Zhang, Qiong A1 - Huang, Ying A1 - Liu, Xiao-Zhen A1 - Hu, Ling A1 - Lan, Wei A1 - Chen, Ling A1 - Lesch, Klaus-Peter A1 - Chen, Xiaoyan A1 - Xu, Lin A1 - Ding, Yu-Qiang T1 - Reducing central serotonin in adulthood promotes hippocampal neurogenesis JF - Scientific Reports N2 - Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER\(^{T2}\) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis. KW - serotonin KW - SSRI KW - hippocampal neurogenesis KW - adulthood Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168004 VL - 6 IS - 20338 ER -