TY - JOUR A1 - Bousquet, Jean A1 - Anto, Josep M. A1 - Bachert, Claus A1 - Haahtela, Tari A1 - Zuberbier, Torsten A1 - Czarlewski, Wienczyslawa A1 - Bedbrook, Anna A1 - Bosnic‐Anticevich, Sinthia A1 - Walter Canonica, G. A1 - Cardona, Victoria A1 - Costa, Elisio A1 - Cruz, Alvaro A. A1 - Erhola, Marina A1 - Fokkens, Wytske J. A1 - Fonseca, Joao A. A1 - Illario, Maddalena A1 - Ivancevich, Juan‐Carlos A1 - Jutel, Marek A1 - Klimek, Ludger A1 - Kuna, Piotr A1 - Kvedariene, Violeta A1 - Le, LTT A1 - Larenas‐Linnemann, Désirée E. A1 - Laune, Daniel A1 - Lourenço, Olga M. A1 - Melén, Erik A1 - Mullol, Joaquim A1 - Niedoszytko, Marek A1 - Odemyr, Mikaëla A1 - Okamoto, Yoshitaka A1 - Papadopoulos, Nikos G. A1 - Patella, Vincenzo A1 - Pfaar, Oliver A1 - Pham‐Thi, Nhân A1 - Rolland, Christine A1 - Samolinski, Boleslaw A1 - Sheikh, Aziz A1 - Sofiev, Mikhail A1 - Suppli Ulrik, Charlotte A1 - Todo‐Bom, Ana A1 - Tomazic, Peter‐Valentin A1 - Toppila‐Salmi, Sanna A1 - Tsiligianni, Ioanna A1 - Valiulis, Arunas A1 - Valovirta, Erkka A1 - Ventura, Maria‐Teresa A1 - Walker, Samantha A1 - Williams, Sian A1 - Yorgancioglu, Arzu A1 - Agache, Ioana A1 - Akdis, Cezmi A. A1 - Almeida, Rute A1 - Ansotegui, Ignacio J. A1 - Annesi‐Maesano, Isabella A1 - Arnavielhe, Sylvie A1 - Basagaña, Xavier A1 - D. Bateman, Eric A1 - Bédard, Annabelle A1 - Bedolla‐Barajas, Martin A1 - Becker, Sven A1 - Bennoor, Kazi S. A1 - Benveniste, Samuel A1 - Bergmann, Karl C. A1 - Bewick, Michael A1 - Bialek, Slawomir A1 - E. Billo, Nils A1 - Bindslev‐Jensen, Carsten A1 - Bjermer, Leif A1 - Blain, Hubert A1 - Bonini, Matteo A1 - Bonniaud, Philippe A1 - Bosse, Isabelle A1 - Bouchard, Jacques A1 - Boulet, Louis‐Philippe A1 - Bourret, Rodolphe A1 - Boussery, Koen A1 - Braido, Fluvio A1 - Briedis, Vitalis A1 - Briggs, Andrew A1 - Brightling, Christopher E. A1 - Brozek, Jan A1 - Brusselle, Guy A1 - Brussino, Luisa A1 - Buhl, Roland A1 - Buonaiuto, Roland A1 - Calderon, Moises A. A1 - Camargos, Paulo A1 - Camuzat, Thierry A1 - Caraballo, Luis A1 - Carriazo, Ana‐Maria A1 - Carr, Warner A1 - Cartier, Christine A1 - Casale, Thomas A1 - Cecchi, Lorenzo A1 - Cepeda Sarabia, Alfonso M. A1 - H. Chavannes, Niels A1 - Chkhartishvili, Ekaterine A1 - Chu, Derek K. A1 - Cingi, Cemal A1 - Correia de Sousa, Jaime A1 - Costa, David J. A1 - Courbis, Anne‐Lise A1 - Custovic, Adnan A1 - Cvetkosvki, Biljana A1 - D'Amato, Gennaro A1 - da Silva, Jane A1 - Dantas, Carina A1 - Dokic, Dejan A1 - Dauvilliers, Yves A1 - De Feo, Giulia A1 - De Vries, Govert A1 - Devillier, Philippe A1 - Di Capua, Stefania A1 - Dray, Gerard A1 - Dubakiene, Ruta A1 - Durham, Stephen R. A1 - Dykewicz, Mark A1 - Ebisawa, Motohiro A1 - Gaga, Mina A1 - El‐Gamal, Yehia A1 - Heffler, Enrico A1 - Emuzyte, Regina A1 - Farrell, John A1 - Fauquert, Jean‐Luc A1 - Fiocchi, Alessandro A1 - Fink‐Wagner, Antje A1 - Fontaine, Jean‐François A1 - Fuentes Perez, José M. A1 - Gemicioğlu, Bilun A1 - Gamkrelidze, Amiran A1 - Garcia‐Aymerich, Judith A1 - Gevaert, Philippe A1 - Gomez, René Maximiliano A1 - González Diaz, Sandra A1 - Gotua, Maia A1 - Guldemond, Nick A. A1 - Guzmán, Maria‐Antonieta A1 - Hajjam, Jawad A1 - Huerta Villalobos, Yunuen R. A1 - Humbert, Marc A1 - Iaccarino, Guido A1 - Ierodiakonou, Despo A1 - Iinuma, Tomohisa A1 - Jassem, Ewa A1 - Joos, Guy A1 - Jung, Ki‐Suck A1 - Kaidashev, Igor A1 - Kalayci, Omer A1 - Kardas, Przemyslaw A1 - Keil, Thomas A1 - Khaitov, Musa A1 - Khaltaev, Nikolai A1 - Kleine‐Tebbe, Jorg A1 - Kouznetsov, Rostislav A1 - Kowalski, Marek L. A1 - Kritikos, Vicky A1 - Kull, Inger A1 - La Grutta, Stefania A1 - Leonardini, Lisa A1 - Ljungberg, Henrik A1 - Lieberman, Philip A1 - Lipworth, Brian A1 - Lodrup Carlsen, Karin C. A1 - Lopes‐Pereira, Catarina A1 - Loureiro, Claudia C. A1 - Louis, Renaud A1 - Mair, Alpana A1 - Mahboub, Bassam A1 - Makris, Michaël A1 - Malva, Joao A1 - Manning, Patrick A1 - Marshall, Gailen D. A1 - Masjedi, Mohamed R. A1 - Maspero, Jorge F. A1 - Carreiro‐Martins, Pedro A1 - Makela, Mika A1 - Mathieu‐Dupas, Eve A1 - Maurer, Marcus A1 - De Manuel Keenoy, Esteban A1 - Melo‐Gomes, Elisabete A1 - Meltzer, Eli O. A1 - Menditto, Enrica A1 - Mercier, Jacques A1 - Micheli, Yann A1 - Miculinic, Neven A1 - Mihaltan, Florin A1 - Milenkovic, Branislava A1 - Mitsias, Dimitirios I. A1 - Moda, Giuliana A1 - Mogica‐Martinez, Maria‐Dolores A1 - Mohammad, Yousser A1 - Montefort, Steve A1 - Monti, Ricardo A1 - Morais‐Almeida, Mario A1 - Mösges, Ralph A1 - Münter, Lars A1 - Muraro, Antonella A1 - Murray, Ruth A1 - Naclerio, Robert A1 - Napoli, Luigi A1 - Namazova‐Baranova, Leyla A1 - Neffen, Hugo A1 - Nekam, Kristoff A1 - Neou, Angelo A1 - Nordlund, Björn A1 - Novellino, Ettore A1 - Nyembue, Dieudonné A1 - O'Hehir, Robyn A1 - Ohta, Ken A1 - Okubo, Kimi A1 - Onorato, Gabrielle L. A1 - Orlando, Valentina A1 - Ouedraogo, Solange A1 - Palamarchuk, Julia A1 - Pali‐Schöll, Isabella A1 - Panzner, Peter A1 - Park, Hae‐Sim A1 - Passalacqua, Gianni A1 - Pépin, Jean‐Louis A1 - Paulino, Ema A1 - Pawankar, Ruby A1 - Phillips, Jim A1 - Picard, Robert A1 - Pinnock, Hilary A1 - Plavec, Davor A1 - Popov, Todor A. A1 - Portejoie, Fabienne A1 - Price, David A1 - Prokopakis, Emmanuel P. A1 - Psarros, Fotis A1 - Pugin, Benoit A1 - Puggioni, Francesca A1 - Quinones‐Delgado, Pablo A1 - Raciborski, Filip A1 - Rajabian‐Söderlund, Rojin A1 - Regateiro, Frederico S. A1 - Reitsma, Sietze A1 - Rivero‐Yeverino, Daniela A1 - Roberts, Graham A1 - Roche, Nicolas A1 - Rodriguez‐Zagal, Erendira A1 - Rolland, Christine A1 - Roller‐Wirnsberger, Regina E. A1 - Rosario, Nelson A1 - Romano, Antonino A1 - Rottem, Menachem A1 - Ryan, Dermot A1 - Salimäki, Johanna A1 - Sanchez‐Borges, Mario M. A1 - Sastre, Joaquin A1 - Scadding, Glenis K. A1 - Scheire, Sophie A1 - Schmid‐Grendelmeier, Peter A1 - Schünemann, Holger J. A1 - Sarquis Serpa, Faradiba A1 - Shamji, Mohamed A1 - Sisul, Juan‐Carlos A1 - Sofiev, Mikhail A1 - Solé, Dirceu A1 - Somekh, David A1 - Sooronbaev, Talant A1 - Sova, Milan A1 - Spertini, François A1 - Spranger, Otto A1 - Stellato, Cristiana A1 - Stelmach, Rafael A1 - Thibaudon, Michel A1 - To, Teresa A1 - Toumi, Mondher A1 - Usmani, Omar A1 - Valero, Antonio A. A1 - Valenta, Rudolph A1 - Valentin‐Rostan, Marylin A1 - Pereira, Marilyn Urrutia A1 - van der Kleij, Rianne A1 - Van Eerd, Michiel A1 - Vandenplas, Olivier A1 - Vasankari, Tuula A1 - Vaz Carneiro, Antonio A1 - Vezzani, Giorgio A1 - Viart, Frédéric A1 - Viegi, Giovanni A1 - Wallace, Dana A1 - Wagenmann, Martin A1 - Wang, De Yun A1 - Waserman, Susan A1 - Wickman, Magnus A1 - Williams, Dennis M. A1 - Wong, Gary A1 - Wroczynski, Piotr A1 - Yiallouros, Panayiotis K. A1 - Yusuf, Osman M. A1 - Zar, Heather J. A1 - Zeng, Stéphane A1 - Zernotti, Mario E. A1 - Zhang, Luo A1 - Shan Zhong, Nan A1 - Zidarn, Mihaela T1 - ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice JF - Allergy N2 - Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed. KW - ARIA KW - asthma KW - CARAT KW - digital transformation of health and care KW - MASK KW - rhinitis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228339 VL - 76 IS - 1 SP - 168 EP - 190 ER - TY - JOUR A1 - Montelius, Mikael A1 - Ljungberg, Maria A1 - Horn, Michael A1 - Forssell-Aronsson, Eva T1 - Tumour size measurement in a mouse model using high resolution MRI JF - BMC Medical Imaging N2 - Background Animal models are frequently used to assess new treatment methods in cancer research. MRI offers a non-invasive in vivo monitoring of tumour tissue and thus allows longitudinal measurements of treatment effects, without the need for large cohorts of animals. Tumour size is an important biomarker of the disease development, but to our knowledge, MRI based size measurements have not yet been verified for small tumours (10−2–10−1 g). The aim of this study was to assess the accuracy of MRI based tumour size measurements of small tumours on mice. Methods 2D and 3D T2-weighted RARE images of tumour bearing mice were acquired in vivo using a 7 T dedicated animal MR system. For the 3D images the acquired image resolution was varied. The images were exported to a PC workstation where the tumour mass was determined assuming a density of 1 g/cm3, using an in-house developed tool for segmentation and delineation. The resulting data were compared to the weight of the resected tumours after sacrifice of the animal using regression analysis. Results Strong correlations were demonstrated between MRI- and necropsy determined masses. In general, 3D acquisition was not a prerequisite for high accuracy. However, it was slightly more accurate than 2D when small (<0.2 g) tumours were assessed for inter- and intraobserver variation. In 3D images, the voxel sizes could be increased from 1603 μm3 to 2403 μm3 without affecting the results significantly, thus reducing acquisition time substantially. Conclusions 2D MRI was sufficient for accurate tumour size measurement, except for small tumours (<0.2 g) where 3D acquisition was necessary to reduce interobserver variation. Acquisition times between 15 and 50 minutes, depending on tumour size, were sufficient for accurate tumour volume measurement. Hence, it is possible to include further MR investigations of the tumour, such as tissue perfusion, diffusion or metabolic composition in the same MR session. KW - cancer KW - magnetic resonance KW - animal model KW - volume determination Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124049 VL - 12 IS - 12 ER - TY - JOUR A1 - Tran-Gia, Johannes A1 - Denis-Bacelar, Ana M. A1 - Ferreira, Kelley M. A1 - Robinson, Andrew P. A1 - Calvert, Nicholas A1 - Fenwick, Andrew J. A1 - Finocchiaro, Domenico A1 - Fioroni, Federica A1 - Grassi, Elisa A1 - Heetun, Warda A1 - Jewitt, Stephanie J. A1 - Kotzassarlidou, Maria A1 - Ljungberg, Michael A1 - McGowan, Daniel R. A1 - Scott, Nathaniel A1 - Scuffham, James A1 - Gleisner, Katarina Sjögreen A1 - Tipping, Jill A1 - Wevrett, Jill A1 - Lassmann, Michael T1 - A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project JF - EJNMMI Physics N2 - Purpose Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time–activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative \(^{177}\)Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests. KW - quantitative SPECT/CT KW - 177Lu SPECT/CT imaging KW - standardization of SPECT/CT imaging KW - harmonization of SPECT/CT imaging KW - international multicenter comparison exercise KW - traceability of SPECT/CT imaging KW - molecular radiotherapy (MRT) KW - 3D printing KW - phantom Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270380 VL - 8 ER - TY - JOUR A1 - Tran-Gia, Johannes A1 - Denis-Bacelar, Ana M. A1 - Ferreira, Kelley M. A1 - Robinson, Andrew P. A1 - Bobin, Christophe A1 - Bonney, Lara M. A1 - Calvert, Nicholas A1 - Collins, Sean M. A1 - Fenwick, Andrew J. A1 - Finocchiaro, Domenico A1 - Fioroni, Federica A1 - Giannopoulou, Katerina A1 - Grassi, Elisa A1 - Heetun, Warda A1 - Jewitt, Stephanie J. A1 - Kotzasarlidou, Maria A1 - Ljungberg, Michael A1 - Lourenço, Valérie A1 - McGowan, Daniel R. A1 - Mewburn-Crook, Jamie A1 - Sabot, Benoit A1 - Scuffham, James A1 - Sjögreen Gleisner, Katarina A1 - Solc, Jaroslav A1 - Thiam, Cheick A1 - Tipping, Jill A1 - Wevrett, Jill A1 - Lassmann, Michael T1 - On the use of solid 133Ba sources as surrogate for liquid 131I in SPECT/CT calibration: a European multi-centre evaluation JF - EJNMMI Physics N2 - Introduction Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. Materials and methods Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68–107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. Results As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12–1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. Conclusion This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals. KW - 133Ba KW - Barium-133 KW - 131I KW - radioiodine KW - solid surrogate source KW - quantitative SPECT/CT KW - comparison exercise KW - multi-centre KW - calibration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357740 VL - 10 ER -