TY - JOUR A1 - Lamatsch, Dunja K. A1 - Adolfsson, Sofia A1 - Senior, Alistair M. A1 - Christiansen, Guntram A1 - Pichler, Maria A1 - Ozaki, Yuichi A1 - Smeds, Linnea A1 - Schartl, Manfred A1 - Nakagawa, Shinichi T1 - A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis) JF - PLoS ONE N2 - Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3' UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes. KW - sex chromosome evolution KW - linkage map KW - determination locus KW - poeciliid fishes KW - heterogamety KW - Cynoglossus semilaevis KW - determining genes KW - Y chromosome KW - sequence alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144004 VL - 10 IS - 2 ER - TY - JOUR A1 - Sendell-Price, Ashley T. A1 - Tulenko, Frank J. A1 - Pettersson, Mats A1 - Kang, Du A1 - Montandon, Margo A1 - Winkler, Sylke A1 - Kulb, Kathleen A1 - Naylor, Gavin P. A1 - Phillippy, Adam A1 - Fedrigo, Olivier A1 - Mountcastle, Jacquelyn A1 - Balacco, Jennifer R. A1 - Dutra, Amalia A1 - Dale, Rebecca E. A1 - Haase, Bettina A1 - Jarvis, Erich D. A1 - Myers, Gene A1 - Burgess, Shawn M. A1 - Currie, Peter D. A1 - Andersson, Leif A1 - Schartl, Manfred T1 - Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks JF - Nature Communications N2 - Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10\(^{−10}\) per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate. KW - evolutionary genetics KW - genomics KW - molecular evolution Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357827 VL - 14 ER -