TY - JOUR A1 - Tuchscherr, Lorena A1 - Bischoff, Markus A1 - Lattar, Santiago M. A1 - Noto Llana, Mariangeles A1 - Pförtner, Henrike A1 - Niemann, Silke A1 - Geraci, Jennifer A1 - Van de Vyver, Hélène A1 - Fraunholz, Martin J. A1 - Cheung, Ambrose L. A1 - Herrmann, Mathias A1 - Völker, Uwe A1 - Sordelli, Daniel O. A1 - Peters, Georg A1 - Loeffler, Bettina T1 - Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, \(\Delta\)sigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections. KW - gene regulator agr KW - endothelial cells KW - modulates virulence KW - death pathway sar locus KW - factor B KW - small-colony variants KW - alpha-toxin KW - epithelial cells KW - in vitro Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143419 VL - 11 IS - 4 ER - TY - JOUR A1 - De Palma, Adriana A1 - Abrahamczyk, Stefan A1 - Aizen, Marcelo A. A1 - Albrecht, Matthias A1 - Basset, Yves A1 - Bates, Adam A1 - Blake, Robin J. A1 - Boutin, Céline A1 - Bugter, Rob A1 - Connop, Stuart A1 - Cruz-López, Leopoldo A1 - Cunningham, Saul A. A1 - Darvill, Ben A1 - Diekötter, Tim A1 - Dorn, Silvia A1 - Downing, Nicola A1 - Entling, Martin H. A1 - Farwig, Nina A1 - Felicioli, Antonio A1 - Fonte, Steven J. A1 - Fowler, Robert A1 - Franzen, Markus Franzén A1 - Goulson, Dave A1 - Grass, Ingo A1 - Hanley, Mick E. A1 - Hendrix, Stephen D. A1 - Herrmann, Farina A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Jauker, Birgit A1 - Kessler, Michael A1 - Knight, M. E. A1 - Kruess, Andreas A1 - Lavelle, Patrick A1 - Le Féon, Violette A1 - Lentini, Pia A1 - Malone, Louise A. A1 - Marshall, Jon A1 - Martínez Pachón, Eliana A1 - McFrederick, Quinn S. A1 - Morales, Carolina L. A1 - Mudri-Stojnic, Sonja A1 - Nates-Parra, Guiomar A1 - Nilsson, Sven G. A1 - Öckinger, Erik A1 - Osgathorpe, Lynne A1 - Parra-H, Alejandro A1 - Peres, Carlos A. A1 - Persson, Anna S. A1 - Petanidou, Theodora A1 - Poveda, Katja A1 - Power, Eileen F. A1 - Quaranta, Marino A1 - Quintero, Carolina A1 - Rader, Romina A1 - Richards, Miriam H. A1 - Roulston, T’ai A1 - Rousseau, Laurent A1 - Sadler, Jonathan P. A1 - Samnegård, Ulrika A1 - Schellhorn, Nancy A. A1 - Schüepp, Christof A1 - Schweiger, Oliver A1 - Smith-Pardo, Allan H. A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Tonietto, Rebecca K. A1 - Tscharntke, Teja A1 - Tylianakis, Jason M. A1 - Verboven, Hans A. F. A1 - Vergara, Carlos H. A1 - Verhulst, Jort A1 - Westphal, Catrin A1 - Yoon, Hyung Joo A1 - Purvis, Andy T1 - Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases JF - Scientific Reports N2 - Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises. KW - bee community KW - land-use change KW - intensification KW - geographic biases KW - taxonomic biases KW - global dataset Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167642 VL - 6 ER -