TY - JOUR A1 - Hebestreit, Helge A1 - Zeidler, Cornelia A1 - Schippers, Christopher A1 - de Zwaan, Martina A1 - Deckert, Jürgen A1 - Heuschmann, Peter A1 - Krauth, Christian A1 - Bullinger, Monika A1 - Berger, Alexandra A1 - Berneburg, Mark A1 - Brandstetter, Lilly A1 - Deibele, Anna A1 - Dieris-Hirche, Jan A1 - Graessner, Holm A1 - Gündel, Harald A1 - Herpertz, Stephan A1 - Heuft, Gereon A1 - Lapstich, Anne-Marie A1 - Lücke, Thomas A1 - Maisch, Tim A1 - Mundlos, Christine A1 - Petermann-Meyer, Andrea A1 - Müller, Susanne A1 - Ott, Stephan A1 - Pfister, Lisa A1 - Quitmann, Julia A1 - Romanos, Marcel A1 - Rutsch, Frank A1 - Schaubert, Kristina A1 - Schubert, Katharina A1 - Schulz, Jörg B. A1 - Schweiger, Susann A1 - Tüscher, Oliver A1 - Ungethüm, Kathrin A1 - Wagner, Thomas O. F. A1 - Haas, Kirsten T1 - Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study JF - Orphanet Journal of Rare Diseases N2 - Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD’s outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30% in standard care to 40% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients’ quality of life and evaluation of care; and f) physicians’ satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease. KW - rare diseases KW - multi‑center cohort study KW - dual guidance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300440 VL - 17 IS - 1 ER - TY - JOUR A1 - Herrmann, Johannes A1 - Muenstermann, Marcel A1 - Strobel, Lea A1 - Schubert-Unkmeir, Alexandra A1 - Woodruff, Trent M. A1 - Gray-Owen, Scott D. A1 - Klos, Andreas A1 - Johswich, Kay O. T1 - Complement C5a receptor 1 exacerbates the pathophysiology of N. meningitidis sepsis and is a potential target for disease treatment JF - mBio N2 - Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1\(^{-/-}\) mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1\(^{-/-}\) mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. Importance: The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease. KW - C5aR1 KW - whole-blood model KW - Neisseria meningitidis KW - anaphylatoxins KW - complement system KW - inflammation KW - invasive disease KW - mouse model KW - neutrophils KW - sepsis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175792 VL - 9 IS - 1 ER - TY - JOUR A1 - Dietrich, Christof P. A1 - Steude, Anja A1 - Tropf, Laura A1 - Schubert, Marcel A1 - Kronenberg, Nils M. A1 - Ostermann, Kai A1 - Höfling, Sven A1 - Gather, Malte C. T1 - An exciton-polariton laser based on biologically produced fluorescent protein JF - Science Advances N2 - Under adequate conditions, cavity polaritons form a macroscopic coherent quantum state, known as polariton condensate. Compared to Wannier-Mott excitons in inorganic semiconductors, the localized Frenkel excitons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a polariton condensate at room temperature. However, this required ultrafast optical pumping, which limits the applications of organic polariton condensates. We demonstrate room temperature polariton condensates of cavity polaritons in simple laminated microcavities filled with biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating polariton condensation under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence, and the presence of a second threshold at higher excitation density that is associated with the onset of photon lasing. KW - polarition condensate KW - enhanced green fluorescent protein KW - photon lasing KW - quantum physics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171305 VL - 2 IS - 8 ER -