TY - JOUR A1 - Schilcher, Felix A1 - Hilsmann, Lioba A1 - Rauscher, Lisa A1 - Değirmenci, Laura A1 - Krischke, Markus A1 - Krischke, Beate A1 - Ankenbrand, Markus A1 - Rutschmann, Benjamin A1 - Mueller, Martin J. A1 - Steffan-Dewenter, Ingolf A1 - Scheiner, Ricarda T1 - In vitro rearing changes social task performance and physiology in honeybees JF - Insects N2 - In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees. KW - honeybee KW - artificial rearing KW - behavior KW - in vitro KW - juvenile hormone KW - triglycerides KW - PER KW - foraging KW - nursing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252305 SN - 2075-4450 VL - 13 IS - 1 ER - TY - JOUR A1 - Schilcher, Felix A1 - Hilsmann, Lioba A1 - Ankenbrand, Markus J. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Steffan-Dewenter, Ingolf A1 - Scheiner, Ricarda T1 - Honeybees are buffered against undernourishment during larval stages JF - Frontiers in Insect Science N2 - The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life. KW - nutrition KW - juvenile hormone KW - nurse bees KW - foragers KW - triglycerides KW - undernourishment KW - task allocation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304646 SN - 2673-8600 VL - 2 ER - TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - THES A1 - Krischke, Markus T1 - Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg T1 - Oxidative stress in plants: Investigating the D1-phytoprostane signalling pathway N2 - Phytoprostane (PP) können nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolensäure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass über den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden können, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolensäure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verstärkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen Kälteschock. Darüber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind. N2 - Phytoprostanes (PP) are formed in vitro and in vivo by free radical-catalyzed peroxidation of linolenic acid. In this work it has been shown that two additional classes of phytoprostanes are formed via the D1-phytoprostane pathway, D1-phytoprostanes (PPD1) and deoxy-J1-phytoprostanes (dPPJ1). For the first time PPD1 and dPPJ1 were prepared by partial synthesis. Additionally, these compounds were also obtained by autoxidation of linolenic acid in vitro. PPD1 and dPPJ1 were separated by chromatographical methods and characterized by UV spectroscopy and mass spectrometry. A novel method for the quantitation of PPD1 and dPPJ1 in planta has been developed, using fluorescence HPLC. This method allowed the identification of PPD1 and dPPJ1 in three different plant species. Furthermore, enhanced formation of dPPJ1 in planta was observed after oxidative stress, e.g. treatment with heavy metals or short exposure to low temperatures. Furthermore, it has been shown that dPPJ1 display biological activity in plants as well as in animals. KW - Phytoprostane KW - Prostaglandin-ähnliche Verbindungen in Pflanzen KW - Lipidperoxidation KW - Jasmonate KW - ROS KW - phytoprostanes KW - prostaglandin-like compounds in plants KW - lipid peroxidation KW - jasmonates KW - ROS Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8599 ER - TY - JOUR A1 - Karimi, Sohail M. A1 - Freund, Matthias A1 - Wager, Brittney M. A1 - Knoblauch, Michael A1 - Fromm, Jörg A1 - M. Mueller, Heike A1 - Ache, Peter A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Geilfus, Christoph-Martin A1 - Alfaran, Ahmed H. A1 - Hedrich, Rainer A1 - Deeken, Rosalia T1 - Under salt stress guard cells rewire ion transport and abscisic acid signaling JF - New Phytologist N2 - Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity. KW - soil KW - stomata KW - abscisic acid (ABA) KW - glycophyte Arabidopsis KW - guard cell KW - halophyte Thellungiella/Eutrema KW - ion transport KW - salt stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259635 VL - 231 IS - 3 ER - TY - JOUR A1 - Krauss, Jochen A1 - Vikuk, Veronika A1 - Young, Carolyn A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Baerenfaller, Katja T1 - Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe JF - Microorganisms N2 - Fungal endophytes of the genus Epichloë live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichloë infected grasses, the inclusion of Epichloë in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichloë infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichloë endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichloë infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichloë festucae var. lolii infecting Lolium perenne. As Epichloë infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichloë infection status or avoiding Epichloë infected seed mixtures. KW - Epichloë spp. KW - grass endophytes KW - cool-season grass species KW - infection rates KW - alkaloids KW - toxicity KW - livestock KW - horses KW - Lolium perenne KW - perennial ryegrass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203323 SN - 2076-2607 VL - 8 IS - 4 ER - TY - JOUR A1 - Elmaidomy, Abeer H. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Owis, Asmaa I. A1 - Rateb, Mostafa E. A1 - Khanfar, Mohammad A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco JF - Metabolites N2 - Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC–HRESIMS. The identified metabolites (1–34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35–38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target’s active site. KW - Premna KW - lignan KW - metabolomic KW - cytotoxic KW - pharmacophore map Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193187 SN - 2218-1989 VL - 9 IS - 10 ER - TY - JOUR A1 - Graus, Dorothea A1 - Li, Kunkun A1 - Rathje, Jan M. A1 - Ding, Meiqi A1 - Krischke, Markus A1 - Müller, Martin J. A1 - Cuin, Tracey Ann A1 - Al‐Rasheid, Khaled A. S. A1 - Scherzer, Sönke A1 - Marten, Irene A1 - Konrad, Kai R. A1 - Hedrich, Rainer T1 - Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling JF - New Phytologist N2 - Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically‐driven leaf movements. Leaf downward movement caused by hydro‐passive turgor loss reached a maximum within 2 h. Salt‐driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake‐dependent cytosolic alkalization, and a return of the apoplast osmolality to pre‐stress levels. Although, transcript numbers of abscisic acid‐ and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)‐exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre‐established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling. KW - calcium signaling KW - cytosolic pH KW - leaf response KW - NaCl transport KW - NHX1 KW - osmotic effects KW - Salt Overly Sensitive pathway KW - salt stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312152 VL - 237 IS - 1 SP - 217 EP - 231 ER - TY - JOUR A1 - Krauss, Jochen A1 - Vikuk, Veronika A1 - Young, Carolyn A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Baerenfaller, Katja T1 - Correction: Krauss, J., et al. Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498 JF - Microorganisms N2 - No abstract available. KW - Epichloë KW - endophyte Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216254 SN - 2076-2607 VL - 8 IS - 10 ER - TY - JOUR A1 - Thurow, Corinna A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Gatz, Christiane T1 - Induction of jasmonoyl-isoleucine (JA-Ile)-dependent JASMONATE ZIM-DOMAIN (JAZ) genes in NaCl-treated Arabidopsis thaliana roots can occur at very low JA-Ile levels and in the absence of the JA/JA-Ile transporter JAT1/AtABCG16 JF - Plants N2 - The plant hormone jasmonoyl-isoleucine (JA-Ile) is an important regulator of plant growth and defense in response to various biotic and abiotic stress cues. Under our experimental conditions, JA-Ile levels increased approximately seven-fold in NaCl-treated Arabidopsis thaliana roots. Although these levels were around 1000-fold lower than in wounded leaves, genes of the JA-Ile signaling pathway were induced by a factor of 100 or more. Induction was severely compromised in plants lacking the JA-Ile receptor CORONATINE INSENSITIVE 1 or enzymes required for JA-Ile biosynthesis. To explain efficient gene expression at very low JA-Ile levels, we hypothesized that salt-induced expression of the JA/JA-Ile transporter JAT1/AtABCG16 would lead to increased nuclear levels of JA-Ile. However, mutant plants with different jat1 alleles were similar to wild-type ones with respect to salt-induced gene expression. The mechanism that allows COI1-dependent gene expression at very low JA-Ile levels remains to be elucidated. KW - allene oxide synthase KW - CORONATINE INSENSITIVE 1 KW - jasmonoyl-isoleucine KW - JA/JA-Ile transport protein JAT1 KW - roots KW - salt Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219382 SN - 2223-7747 VL - 9 IS - 12 ER -