TY - JOUR A1 - Owen, Dylan M. A1 - Sauer, Markus A1 - Gaus, Katharina T1 - Fluorescence localization microscopy JF - Communicative & Integrative Biology N2 - Localization microscopy techniques are super-resolution fluorescence imaging methods based on the detection of individual molecules. Despite the relative simplicity of the microscope setups and the availability of commercial instruments, localization microscopy faces unique challenges. While achieving super-resolution is now routine, issues concerning data analysis and interpretation mean that revealing novel biological insights is not. Here, we outline why data analysis and the design of robust test samples may hold the key to harness the full potential of localization microscopy. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124416 VL - 5 IS - 4 ER - TY - JOUR A1 - Schneider, Johannes A1 - Klein, Teresa A1 - Mielich-Süss, Benjamin A1 - Koch, Gudrun A1 - Franke, Christian A1 - Kuipers, Oskar P. A1 - Kovács, Ákos T. A1 - Sauer, Markus A1 - Lopez, Daniel T1 - Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium JF - PLoS Genetics N2 - Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. KW - membrane proteins KW - gene expression KW - bacillus subtilis KW - fluorescence microscopy KW - cell fusion KW - signal transduction KW - gene regulation KW - lipids Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125577 VL - 11 IS - 4 ER - TY - JOUR A1 - Andreska, Thomas A1 - Aufmkolk, Sarah A1 - Sauer, Markus A1 - Blum, Robert T1 - High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons JF - Frontiers in Cellular Neuroscience N2 - In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity. KW - hippocampal neurons KW - synapse structure KW - presynapse KW - synaptic localization KW - BDNF Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119793 SN - 1662-5102 VL - 8 IS - 107 ER - TY - JOUR A1 - Proppert, Sven A1 - Wolter, Steve A1 - Holm, Thorge A1 - Klein, Theresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging JF - Optics Express N2 - In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity. KW - three-dimensional microscopy KW - fluorescence microscopy KW - medical and biological imaging KW - superresolution Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119730 SN - 1094-4087 VL - 22 IS - 9 ER - TY - JOUR A1 - Lando, David A1 - Endesfelder, Ulrike A1 - Berger, Harald A1 - Subramanian, Lakxmi A1 - Dunne, Paul D. A1 - McColl, James A1 - Klenerman, David A1 - Carr, Antony M. A1 - Sauer, Markus A1 - Allshire, Robin C. A1 - Heilemann, Mike A1 - Laue, Ernest D. T1 - Quantitative single-molecule microscopy reveals that CENP-A\(^{Cnp1}\) deposition occurs during G2 in fission yeast JF - Open Biology N2 - The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A\(^{Cnp1}\) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A\(^{Cnp1}\) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle. KW - nucleosome KW - fission yeast KW - identification KW - propagation KW - CSE4, CENP-A KW - CENP-A KW - schizosaccaromyces-pombe KW - fluorescent protein KW - centomeres KW - superresolution KW - chromatin KW - centromere KW - ingle-molecule microscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134682 VL - 2 IS - 120078 ER - TY - JOUR A1 - Wolf, Annette A1 - Akrap, Nina A1 - Marg, Berenice A1 - Galliardt, Helena A1 - Heiligentag, Martyna A1 - Humpert, Fabian A1 - Sauer, Markus A1 - Kaltschmidt, Barbara A1 - Kaltschmidt, Christian A1 - Seidel, Thorsten T1 - Elements of Transcriptional Machinery Are Compatible among Plants and Mammals JF - PLoS ONE N2 - In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-\(\kappa\) B in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-\(\kappa\) B such as its inhibitor I\(\kappa\)B isoform \(\alpha\) that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-\(\kappa\)B in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-\(\kappa\)B signaling pathways. The system successfully enabled the controlled manipulation of NF-\(\kappa\)B activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e. g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway. KW - complexes KW - in vivo KW - DNA-binding KW - nuclear proe KW - gene expression KW - NF-KAPPA-B KW - RNA-binding protein KW - alpha KW - inflammation KW - homodimers Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131203 VL - 8 IS - 1 ER - TY - JOUR A1 - Klamp, Tobias A1 - Camps, Marta A1 - Nieto, Benjamin A1 - Guasch, Francesc A1 - Ranasinghe, Rohan T. A1 - Wiedemann, Jens A1 - Petrášek, Zdeněk A1 - Schwille, Petra A1 - Klenerman, David A1 - Sauer, Markus T1 - Highly Rapid Amplification-Free and Quantitative DNA Imaging Assay JF - Scientific Reports N2 - There is an urgent need for rapid and highly sensitive detection of pathogen-derivedDNAin a point-of-care (POC) device for diagnostics in hospitals and clinics. This device needs to work in a ‘sample-in-result-out’ mode with minimum number of steps so that it can be completely integrated into a cheap and simple instrument. We have developed a method that directly detects unamplified DNA, and demonstrate its sensitivity on realistically sized 5 kbp targetDNA fragments of Micrococcus luteus in small sample volumes of 20 mL. The assay consists of capturing and accumulating of target DNA on magnetic beads with specific capture oligonucleotides, hybridization of complementary fluorescently labeled detection oligonucleotides, and fluorescence imaging on a miniaturized wide-field fluorescence microscope. Our simple method delivers results in less than 20 minutes with a limit of detection (LOD) of,5 pMand a linear detection range spanning three orders of magnitude. KW - laboratory techniques and procedures KW - diseases KW - infectious diseases KW - assay systems Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130500 VL - 3 IS - 1852 ER - TY - JOUR A1 - Wolter, Steve A1 - Endesfelder, Ulrike A1 - Linde, Sebastian van de A1 - Heilemann, Mike A1 - Sauer, Markus T1 - Measuring localization performance of super-resolution algorithms on very active samples JF - Optics Express N2 - Super-resolution fluorescence imaging based on inglemolecule localization relies critically on the availability of efficient processing algorithms to distinguish, identify, and localize emissions of single fluorophores. In multiple current applications, such as threedimensional, time-resolved or cluster imaging, high densities of fluorophore emissions are common. Here, we provide an analytic tool to test the performance and quality of localization microscopy algorithms and demonstrate that common algorithms encounter difficulties for samples with high fluorophore density. We demonstrate that, for typical single-molecule localization microscopy methods such as dSTORM and the commonly used rapidSTORM scheme, computational precision limits the acceptable density of concurrently active fluorophores to 0.6 per square micrometer and that the number of successfully localized fluorophores per frame is limited to 0.2 per square micrometer. Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85936 ER - TY - JOUR A1 - Deng, Chunchu A1 - Reinhard, Sebastian A1 - Hennlein, Luisa A1 - Eilts, Janna A1 - Sachs, Stefan A1 - Doose, Sören A1 - Jablonka, Sibylle A1 - Sauer, Markus A1 - Moradi, Mehri A1 - Sendtner, Michael T1 - Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy JF - Translational Neurodegeneration N2 - Background: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. KW - spinal muscular atrophy KW - BDNF stimulation KW - dynamics of ribosomal assembly KW - presynaptic ER dynamics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300649 SN - 2047-9158 VL - 11 IS - 1 ER - TY - JOUR A1 - Schlegel, Jan A1 - Sauer, Markus T1 - Hochaufgelöste Visualisierung einzelner Moleküle auf ganzen Zellen JF - BIOspektrum N2 - Biological systems are dynamic and three-dimensional but many techniques allow only static and two-dimensional observation of cells. We used three-dimensional (3D) lattice light-sheet single-molecule localization microscopy (dSTORM) to investigate the complex interactions and distribution of single molecules in the plasma membrane of whole cells. Different receptor densities of the adhesion receptor CD56 at different parts of the cell highlight the importance and need of three-dimensional observation and analysis techniques. KW - Visualisierung KW - Moleküle KW - Zellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232365 SN - 0947-0867 VL - 7 ER - TY - JOUR A1 - Reinhard, Sebastian A1 - Helmerich, Dominic A. A1 - Boras, Dominik A1 - Sauer, Markus A1 - Kollmannsberger, Philip T1 - ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy JF - BMC Bioinformatics N2 - Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility. KW - compressed sensing KW - AI KW - SMLM KW - FLIMbee KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299768 VL - 23 IS - 1 ER - TY - JOUR A1 - Wäldchen, Sina A1 - Lehmann, Julian A1 - Klein, Teresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Light-induced cell damage in live-cell super-resolution microscopy JF - Scientific Reports N2 - Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of similar to 1 kW cm\(^{-2}\) at 640 nm for several minutes, the maximum dose at 405 nm is only similar to 50 J cm\(^{-2}\), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities. KW - optical reconstruction microscopy KW - tag fusion proteins KW - localization microscopy KW - photodynamic therapy KW - diffraction limit KW - illumination microscopy KW - structured illumination KW - fluorescent probes KW - in vitro KW - dynamics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145207 VL - 5 IS - 15348 ER - TY - JOUR A1 - Dannhäuser, Sven A1 - Mrestani, Achmed A1 - Gundelach, Florian A1 - Pauli, Martin A1 - Komma, Fabian A1 - Kollmannsberger, Philip A1 - Sauer, Markus A1 - Heckmann, Manfred A1 - Paul, Mila M. T1 - Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation JF - Frontiers in Cellular Neuroscience N2 - Introduction Neurotransmitter release at presynaptic active zones (AZs) requires concerted protein interactions within a dense 3D nano-hemisphere. Among the complex protein meshwork the (M)unc-13 family member Unc-13 of Drosophila melanogaster is essential for docking of synaptic vesicles and transmitter release. Methods We employ minos-mediated integration cassette (MiMIC)-based gene editing using GFSTF (EGFP-FlAsH-StrepII-TEV-3xFlag) to endogenously tag all annotated Drosophila Unc-13 isoforms enabling visualization of endogenous Unc-13 expression within the central and peripheral nervous system. Results and discussion Electrophysiological characterization using two-electrode voltage clamp (TEVC) reveals that evoked and spontaneous synaptic transmission remain unaffected in unc-13\(^{GFSTF}\) 3rd instar larvae and acute presynaptic homeostatic potentiation (PHP) can be induced at control levels. Furthermore, multi-color structured-illumination shows precise co-localization of Unc-13\(^{GFSTF}\), Bruchpilot, and GluRIIA-receptor subunits within the synaptic mesoscale. Localization microscopy in combination with HDBSCAN algorithms detect Unc-13\(^{GFSTF}\) subclusters that move toward the AZ center during PHP with unaltered Unc-13\(^{GFSTF}\) protein levels. KW - active zone KW - Unc-13 KW - MiMIC KW - presynaptic homeostasis KW - nanoarchitecture KW - localization microscopy KW - STORM KW - HDBSCAN Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299440 SN - 1662-5102 VL - 16 ER - TY - JOUR A1 - Ehmann, Nadine A1 - Sauer, Markus A1 - Kittel, Robert J. T1 - Super-resolution microscopy of the synaptic active zone JF - Frontiers in Cellular Neuroscience N2 - Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins KW - excitation-secretion coupling KW - Ca\(^{2+}\) channels KW - structure-function relationships KW - super-resolution microscopy KW - active zone KW - presynaptic calcium KW - neurotransmitter release Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148997 VL - 9 IS - 7 ER - TY - JOUR A1 - Schlegel, Jan A1 - Peters, Simon A1 - Doose, Sören A1 - Schubert-Unkmeir, Alexandra A1 - Sauer, Markus T1 - Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites JF - Frontiers in Cell and Developmental Biology N2 - Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection. KW - Neisseria meningitidis KW - sphingolipids KW - gangliosides and lipid rafts KW - super-resolution microscopy KW - single-molecule tracking Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201639 VL - 7 IS - 194 ER - TY - JOUR A1 - Brosch, Philippa K. A1 - Korsa, Tessa A1 - Taban, Danush A1 - Eiring, Patrick A1 - Hildebrand, Sascha A1 - Neubauer, Julia A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Shirakashi, Ryo A1 - Djuzenova, Cholpon S. A1 - Sisario, Dmitri A1 - Sukhorukov, Vladimir L. T1 - Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration JF - Cancers N2 - (1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment. KW - volume regulation KW - transportome KW - phlorizin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297498 SN - 2072-6694 VL - 14 IS - 23 ER - TY - JOUR A1 - Zacher, Magdalena A1 - Wollanka, Nele A1 - Sauer, Christina A1 - Haßtenteufel, Kathrin A1 - Wallwiener, Stephanie A1 - Wallwiener, Markus A1 - Maatouk, Imad T1 - Prenatal paternal depression, anxiety, and somatic symptom burden in different risk samples: an explorative study JF - Archives of Gynecology and Obstetrics N2 - Purpose Growing evidence implies that transition to parenthood triggers symptoms of mental burden not only in women but likewise in men, especially in high-risk pregnancies. This is the first study that examined and compared the prevalence rates of depression, anxiety, and somatic symptom burden of expectant fathers who face different risk situations during pregnancy. Methods Prevalence rates of paternal depression (Edinburgh postnatal depression scale), anxiety (generalized anxiety disorder seven), and somatic symptom burden (somatic symptom scale eight) were examined in two risk samples and one control group in the third trimester of their partners’ pregnancy: risk sample I (n = 41) consist of expectant fathers whose partners were prenatally hospitalized due to medical complications; risk sample II (n = 52) are fathers whose partners were prenatally mentally distressed; and control group (n = 70) are those non-risk pregnancies. Results On a purely descriptive level, the data display a trend of higher symptom burden of depression, anxiety, and somatic symptoms in the two risk samples, indicating that expectant fathers, whose pregnant partners were hospitalized or suffered prenatal depression, were more prenatally distressed. Exploratory testing of group differences revealed an almost three times higher prevalence rate of anxiety in fathers whose partner was hospitalized (12.2%) compared to those non-risks (4.3%). Conclusion Results underline the need for screening implementations for paternal prenatal psychological distress, as well as specific prevention and treatment programs, especially for fathers in risk situations, such as their pregnant partners’ prenatal hospitalization. The study was registered with the German clinical trials register (DRKS00020131) on 2019/12/09. KW - prenatal paternal depression KW - anxiety KW - somatic symptom burden KW - risk pregnancy KW - hospitalization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324465 VL - 307 IS - 4 ER - TY - JOUR A1 - Eiring, Patrick A1 - McLaughlin, Ryan A1 - Matikonda, Siddharth S. A1 - Han, Zhongying A1 - Grabenhorst, Lennart A1 - Helmerich, Dominic A. A1 - Meub, Mara A1 - Beliu, Gerti A1 - Luciano, Michael A1 - Bandi, Venu A1 - Zijlstra, Niels A1 - Shi, Zhen-Dan A1 - Tarasov, Sergey G. A1 - Swenson, Rolf A1 - Tinnefeld, Philip A1 - Glembockyte, Viktorija A1 - Cordes, Thorben A1 - Sauer, Markus A1 - Schnermann, Martin J. T1 - Targetable conformationally restricted cyanines enable photon-count-limited applications JF - Angewandte Chemie Internationale Edition N2 - Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance. KW - biology KW - super-resolution microscopy KW - conformational restriction KW - cyanine dyes KW - DNA nanotechnology KW - fluorescent dyes KW - single-molecule fluorescence spectroscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256559 VL - 60 IS - 51 ER - TY - JOUR A1 - Börtlein, Charlene A1 - Draeger, Annette A1 - Schoenauer, Roman A1 - Kuhlemann, Alexander A1 - Sauer, Markus A1 - Schneider-Schaulies, Sybille A1 - Avota, Elita T1 - The neutral sphingomyelinase 2 is required to polarize and sustain T Cell receptor signaling JF - Frontiers in Immunology N2 - By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca\(^{2+}\) mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization. KW - neutral sphingomyelinase 2 KW - T cells KW - ceramides KW - PKCζ, KW - the microtubule-organizing center Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176572 VL - 9 IS - 815 ER - TY - JOUR A1 - Becam, Jérôme A1 - Walter, Tim A1 - Burgert, Anne A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Schubert-Unkmeir, Alexandra T1 - Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria JF - Scientific Reports N2 - Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C\(_{6}\) and long-chain C\(_{16}\)-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C\(_{6}\)-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω–azido-C\(_{6}\)-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω–azido-C\(_{6}\)-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae. KW - ceramide analogs KW - Neisseria KW - ceramide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159367 VL - 7 ER -