TY - JOUR A1 - Pauli, Martin A1 - Paul, Mila M. A1 - Proppert, Sven A1 - Mrestani, Achmed A1 - Sharifi, Marzieh A1 - Repp, Felix A1 - Kürzinger, Lydia A1 - Kollmannsberger, Philip A1 - Sauer, Markus A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections JF - Communications Biology N2 - Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution. KW - mossy fiber synapses KW - CA3 pyrimidal cells KW - CA2+ channels KW - active zone KW - hippocampal KW - release KW - plasticity KW - proteins KW - platform KW - reveals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259830 VL - 4 ER - TY - JOUR A1 - Memmel, Simon A1 - Sisario, Dmitri A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Sukhorukov, Vladimir L. A1 - Djuzenova, Cholpon S. A1 - Flentje, Michael T1 - FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy JF - BMC Bioinformatics N2 - Background Phosphorylated histone H2AX, also known as gamma H2AX, forms mu m-sized nuclear foci at the sites of DNA double-strand breaks (DSBs) induced by ionizing radiation and other agents. Due to their specificity and sensitivity, gamma H2AX immunoassays have become the gold standard for studying DSB induction and repair. One of these assays relies on the immunofluorescent staining of gamma H2AX followed by microscopic imaging and foci counting. During the last years, semi- and fully automated image analysis, capable of fast detection and quantification of gamma H2AX foci in large datasets of fluorescence images, are gradually replacing the traditional method of manual foci counting. A major drawback of the non-commercial software for foci counting (available so far) is that they are restricted to 2D-image data. In practice, these algorithms are useful for counting the foci located close to the midsection plane of the nucleus, while the out-of-plane foci are neglected. Results To overcome the limitations of 2D foci counting, we present a freely available ImageJ-based plugin (FocAn) for automated 3D analysis of gamma H2AX foci in z-image stacks acquired by confocal fluorescence microscopy. The image-stack processing algorithm implemented in FocAn is capable of automatic 3D recognition of individual cell nuclei and gamma H2AX foci, as well as evaluation of the total foci number per cell nucleus. The FocAn algorithm consists of two parts: nucleus identification and foci detection, each employing specific sequences of auto local thresholding in combination with watershed segmentation techniques. We validated the FocAn algorithm using fluorescence-labeled gamma H2AX in two glioblastoma cell lines, irradiated with 2 Gy and given up to 24 h post-irradiation for repair. We found that the data obtained with FocAn agreed well with those obtained with an already available software (FoCo) and manual counting. Moreover, FocAn was capable of identifying overlapping foci in 3D space, which ensured accurate foci counting even at high DSB density of up to similar to 200 DSB/nucleus. Conclusions FocAn is freely available an open-source 3D foci analyzer. The user-friendly algorithm FocAn requires little supervision and can automatically count the amount of DNA-DSBs, i.e. fluorescence-labeled gamma H2AX foci, in 3D image stacks acquired by laser-scanning microscopes without additional nuclei staining. KW - DNA double-strand breaks KW - ImageJ plugin KW - gamma H2AX-foci KW - Automated analysis KW - Ionizing radiation KW - Open-source tool KW - Radiation biology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229023 VL - 21 ER - TY - JOUR A1 - Trinks, Nora A1 - Reinhard, Sebastian A1 - Drobny, Matthias A1 - Heilig, Linda A1 - Löffler, Jürgen A1 - Sauer, Markus A1 - Terpitz, Ulrich T1 - Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy JF - Communications Biology N2 - Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution. KW - biological fluorescence KW - fluorescence imaging KW - imaging the immune system KW - infectious diseases KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264996 VL - 4 IS - 1 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Götz, Ralph A1 - Gao, Shiqiang A1 - Sauer, Markus A1 - Kozjak-Pavlovic, Vera T1 - Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae JF - Frontiers in Cell and Developmental Biology N2 - Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4–4.5, improving the resolution to 60–70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria. KW - Expansion microscopy KW - mitochondria KW - cristae KW - structured illumination microscope KW - ultrastructure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208296 SN - 2296-634X VL - 8 ER - TY - JOUR A1 - Ferber, Elena A1 - Gerhards, Julian A1 - Sauer, Miriam A1 - Krischke, Markus A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Berger, Susanne A1 - Fekete, Agnes A1 - Mueller, Martin J. T1 - Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb JF - Frontiers in Plant Science N2 - In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms. KW - autotoxicity KW - heat shock response KW - isothiocyanates KW - mustard oil bomb KW - reactive electrophilic species KW - redox homeostasis KW - sulforaphane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207104 SN - 1664-462X VL - 11 ER - TY - JOUR A1 - Eiring, Patrick A1 - McLaughlin, Ryan A1 - Matikonda, Siddharth S. A1 - Han, Zhongying A1 - Grabenhorst, Lennart A1 - Helmerich, Dominic A. A1 - Meub, Mara A1 - Beliu, Gerti A1 - Luciano, Michael A1 - Bandi, Venu A1 - Zijlstra, Niels A1 - Shi, Zhen-Dan A1 - Tarasov, Sergey G. A1 - Swenson, Rolf A1 - Tinnefeld, Philip A1 - Glembockyte, Viktorija A1 - Cordes, Thorben A1 - Sauer, Markus A1 - Schnermann, Martin J. T1 - Targetable conformationally restricted cyanines enable photon-count-limited applications JF - Angewandte Chemie Internationale Edition N2 - Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance. KW - biology KW - super-resolution microscopy KW - conformational restriction KW - cyanine dyes KW - DNA nanotechnology KW - fluorescent dyes KW - single-molecule fluorescence spectroscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256559 VL - 60 IS - 51 ER - TY - JOUR A1 - Börtlein, Charlene A1 - Draeger, Annette A1 - Schoenauer, Roman A1 - Kuhlemann, Alexander A1 - Sauer, Markus A1 - Schneider-Schaulies, Sybille A1 - Avota, Elita T1 - The neutral sphingomyelinase 2 is required to polarize and sustain T Cell receptor signaling JF - Frontiers in Immunology N2 - By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca\(^{2+}\) mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization. KW - neutral sphingomyelinase 2 KW - T cells KW - ceramides KW - PKCζ, KW - the microtubule-organizing center Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176572 VL - 9 IS - 815 ER - TY - JOUR A1 - Becam, Jérôme A1 - Walter, Tim A1 - Burgert, Anne A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Schubert-Unkmeir, Alexandra T1 - Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria JF - Scientific Reports N2 - Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C\(_{6}\) and long-chain C\(_{16}\)-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C\(_{6}\)-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω–azido-C\(_{6}\)-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω–azido-C\(_{6}\)-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae. KW - ceramide analogs KW - Neisseria KW - ceramide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159367 VL - 7 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Götz, Ralph A1 - Sauer, Markus A1 - Rudel, Thomas T1 - Detection of chlamydia developmental forms and secreted effectors by expansion microscopy JF - Frontiers in Cellular and Infection Microbiology N2 - Expansion microscopy (ExM) is a novel tool to improve the resolution of fluorescence-based microscopy that has not yet been used to visualize intracellular pathogens. Here we show the expansion of the intracellular pathogen Chlamydia trachomatis, enabling to differentiate its two distinct forms, catabolic active reticulate bodies (RB) and infectious elementary bodies (EB), on a conventional confocal microscope. We show that ExM enables the possibility to precisely locate chlamydial effector proteins, such as CPAF or Cdu1, within and outside of the chlamydial inclusion. Thus, we claim that ExM offers the possibility to address a broad range of questions and may be useful for further research on various intracellular pathogens. KW - expansion microscopy KW - chlamydia KW - secreted effectors KW - developmental forms KW - superresolution KW - imaging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195716 SN - 2235-2988 VL - 9 IS - 276 ER - TY - JOUR A1 - Scholz, Nicole A1 - Guan, Chonglin A1 - Nieberler, Matthias A1 - Grotmeyer, Alexander A1 - Maiellaro, Isabella A1 - Gao, Shiqiang A1 - Beck, Sebastian A1 - Pawlak, Matthias A1 - Sauer, Markus A1 - Asan, Esther A1 - Rothemund, Sven A1 - Winkler, Jana A1 - Prömel, Simone A1 - Nagel, Georg A1 - Langenhan, Tobias A1 - Kittel, Robert J T1 - Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons JF - eLife N2 - Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response. KW - Latrophilin KW - adhesion GPCR KW - dCIRL KW - sensory physiology KW - metabotropic signalling KW - mechanotransduction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170520 VL - 6 IS - e28360 ER - TY - JOUR A1 - Yadav, Preeti A1 - Selvaraj, Bhuvaneish T. A1 - Bender, Florian L. P. A1 - Behringer, Marcus A1 - Moradi, Mehri A1 - Sivadasan, Rajeeve A1 - Dombert, Benjamin A1 - Blum, Robert A1 - Asan, Esther A1 - Sauer, Markus A1 - Julien, Jean-Pierre A1 - Sendtner, Michael T1 - Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling JF - Acta Neuropathologica N2 - In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features. KW - Amyotrophic-lateral-sclerosis KW - Transgenic mice KW - Mouse model KW - Alzheimers disease KW - Neurofilament KW - Progressive motor neuronopathy KW - Axonal transport KW - Intermediate filaments KW - Motoneuron disease KW - Lacking neurofilaments KW - Missense mutation KW - Axon degeneration KW - Microtubules KW - Stathmin KW - Stat3 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188234 VL - 132 IS - 1 ER - TY - JOUR A1 - Weiss, Esther A1 - Schlegel, Jan A1 - Terpitz, Ulrich A1 - Weber, Michael A1 - Linde, Jörg A1 - Schmitt, Anna-Lena A1 - Hünniger, Kerstin A1 - Marischen, Lothar A1 - Gamon, Florian A1 - Bauer, Joachim A1 - Löffler, Claudia A1 - Kurzai, Oliver A1 - Morton, Charles Oliver A1 - Sauer, Markus A1 - Einsele, Hermann A1 - Loeffler, Juergen T1 - Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen Aspergillus fumigatus JF - Frontiers in Immunology N2 - Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1α, MIP-1β, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56\(^{bright}\)CD16\(^{dim}\) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1α, MIP-1β, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility. KW - natural killer cell KW - stem cell transplantation KW - corticosteroids KW - CCL3 KW - CCL4 KW - CCL5 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212581 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Kouhestani, Dina A1 - Geis, Maria A1 - Alsouri, Saed A1 - Bumm, Thomas G. P. A1 - Einsele, Hermann A1 - Sauer, Markus A1 - Stuhler, Gernot T1 - Variant signaling topology at the cancer cell–T-cell interface induced by a two-component T-cell engager JF - Cellular & Molecular Immunology N2 - No abstract available. KW - immunotherapy KW - tumour immunology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241189 VL - 18 ER - TY - JOUR A1 - Geiger, Nina A1 - Kersting, Louise A1 - Schlegel, Jan A1 - Stelz, Linda A1 - Fähr, Sofie A1 - Diesendorf, Viktoria A1 - Roll, Valeria A1 - Sostmann, Marie A1 - König, Eva-Maria A1 - Reinhard, Sebastian A1 - Brenner, Daniela A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The acid ceramidase is a SARS-CoV-2 host factor JF - Cells N2 - SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2–RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor. KW - SARS-CoV-2 KW - ceramides KW - ceramidase KW - fluoxetine KW - acid sphingomyelinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286105 SN - 2073-4409 VL - 11 IS - 16 ER - TY - JOUR A1 - Brosch, Philippa K. A1 - Korsa, Tessa A1 - Taban, Danush A1 - Eiring, Patrick A1 - Hildebrand, Sascha A1 - Neubauer, Julia A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Shirakashi, Ryo A1 - Djuzenova, Cholpon S. A1 - Sisario, Dmitri A1 - Sukhorukov, Vladimir L. T1 - Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration JF - Cancers N2 - (1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment. KW - volume regulation KW - transportome KW - phlorizin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297498 SN - 2072-6694 VL - 14 IS - 23 ER - TY - JOUR A1 - Zacher, Magdalena A1 - Wollanka, Nele A1 - Sauer, Christina A1 - Haßtenteufel, Kathrin A1 - Wallwiener, Stephanie A1 - Wallwiener, Markus A1 - Maatouk, Imad T1 - Prenatal paternal depression, anxiety, and somatic symptom burden in different risk samples: an explorative study JF - Archives of Gynecology and Obstetrics N2 - Purpose Growing evidence implies that transition to parenthood triggers symptoms of mental burden not only in women but likewise in men, especially in high-risk pregnancies. This is the first study that examined and compared the prevalence rates of depression, anxiety, and somatic symptom burden of expectant fathers who face different risk situations during pregnancy. Methods Prevalence rates of paternal depression (Edinburgh postnatal depression scale), anxiety (generalized anxiety disorder seven), and somatic symptom burden (somatic symptom scale eight) were examined in two risk samples and one control group in the third trimester of their partners’ pregnancy: risk sample I (n = 41) consist of expectant fathers whose partners were prenatally hospitalized due to medical complications; risk sample II (n = 52) are fathers whose partners were prenatally mentally distressed; and control group (n = 70) are those non-risk pregnancies. Results On a purely descriptive level, the data display a trend of higher symptom burden of depression, anxiety, and somatic symptoms in the two risk samples, indicating that expectant fathers, whose pregnant partners were hospitalized or suffered prenatal depression, were more prenatally distressed. Exploratory testing of group differences revealed an almost three times higher prevalence rate of anxiety in fathers whose partner was hospitalized (12.2%) compared to those non-risks (4.3%). Conclusion Results underline the need for screening implementations for paternal prenatal psychological distress, as well as specific prevention and treatment programs, especially for fathers in risk situations, such as their pregnant partners’ prenatal hospitalization. The study was registered with the German clinical trials register (DRKS00020131) on 2019/12/09. KW - prenatal paternal depression KW - anxiety KW - somatic symptom burden KW - risk pregnancy KW - hospitalization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324465 VL - 307 IS - 4 ER - TY - JOUR A1 - Brenner, Daniela A1 - Geiger, Nina A1 - Schlegel, Jan A1 - Diesendorf, Viktoria A1 - Kersting, Louise A1 - Fink, Julian A1 - Stelz, Linda A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Bodem, Jochen A1 - Seibel, Jürgen T1 - Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides JF - International Journal of Molecular Sciences N2 - Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication. KW - ceramides KW - SARS-CoV-2 KW - azido-ceramides KW - sphingolipids Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313581 SN - 1422-0067 VL - 24 IS - 8 ER - TY - JOUR A1 - Breyer, Maximilian A1 - Grüner, Julia A1 - Klein, Alexandra A1 - Finke, Laura A1 - Klug, Katharina A1 - Sauer, Markus A1 - Üçeyler, Nurcan T1 - \(In\) \(vitro\) characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease JF - Molecular Genetics and Metabolism Reports N2 - Highlights • The GLA variant S126G is not associated with Fabry symptoms in the presented case • S126G has no effect on α-GAL A activity or Gb3 levels in this patient • S126G sensory neurons show no electrophysiological abnormalities Abstract Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice. KW - Fabry disease KW - variants of unknown significance KW - C.376A>G (p.S126G) KW - globotriaosylceramide KW - induced pluripotent stem cells KW - sensory neurons KW - disease model KW - α-Galactosidase A Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350295 SN - 22144269 VL - 38 ER - TY - JOUR A1 - Munawar, Umair A1 - Zhou, Xiang A1 - Prommersberger, Sabrina A1 - Nerreter, Silvia A1 - Vogt, Cornelia A1 - Steinhardt, Maximilian J. A1 - Truger, Marietta A1 - Mersi, Julia A1 - Teufel, Eva A1 - Han, Seungbin A1 - Haertle, Larissa A1 - Banholzer, Nicole A1 - Eiring, Patrick A1 - Danhof, Sophia A1 - Navarro-Aguadero, Miguel Angel A1 - Fernandez-Martin, Adrian A1 - Ortiz-Ruiz, Alejandra A1 - Barrio, Santiago A1 - Gallardo, Miguel A1 - Valeri, Antonio A1 - Castellano, Eva A1 - Raab, Peter A1 - Rudert, Maximilian A1 - Haferlach, Claudia A1 - Sauer, Markus A1 - Hudecek, Michael A1 - Martinez-Lopez, J. A1 - Waldschmidt, Johannes A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, K. Martin T1 - Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma JF - Communications Biology N2 - The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM. KW - immunotherapy KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357609 VL - 6 ER - TY - JOUR A1 - Andreska, Thomas A1 - Lüningschrör, Patrick A1 - Wolf, Daniel A1 - McFleder, Rhonda L. A1 - Ayon-Olivas, Maurilyn A1 - Rattka, Marta A1 - Drechsler, Christine A1 - Perschin, Veronika A1 - Blum, Robert A1 - Aufmkolk, Sarah A1 - Granado, Noelia A1 - Moratalla, Rosario A1 - Sauer, Markus A1 - Monoranu, Camelia A1 - Volkmann, Jens A1 - Ip, Chi Wang A1 - Stigloher, Christian A1 - Sendtner, Michael T1 - DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons JF - Cell Reports N2 - Highlights • Dopamine receptor-1 activation induces TrkB cell-surface expression in striatal neurons • Dopaminergic deficits cause TrkB accumulation and clustering in the ER • TrkB clusters colocalize with cargo receptor SORCS-2 in direct pathway striatal neurons • Intracellular TrkB clusters fail to fuse with lysosomes after dopamine depletion Summary Disturbed motor control is a hallmark of Parkinson’s disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD. KW - motor learning KW - cortico-striatal synapse KW - basal ganglia KW - direct pathway KW - DRD1 KW - dSPN KW - BDNF KW - TrkB KW - synaptic plasticity KW - GPCR Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349932 VL - 42 IS - 6 ER -