TY - JOUR A1 - Dech, Stefan A1 - Holzwarth, Stefanie A1 - Asam, Sarah A1 - Andresen, Thorsten A1 - Bachmann, Martin A1 - Boettcher, Martin A1 - Dietz, Andreas A1 - Eisfelder, Christina A1 - Frey, Corinne A1 - Gesell, Gerhard A1 - Gessner, Ursula A1 - Hirner, Andreas A1 - Hofmann, Matthias A1 - Kirches, Grit A1 - Klein, Doris A1 - Klein, Igor A1 - Kraus, Tanja A1 - Krause, Detmar A1 - Plank, Simon A1 - Popp, Thomas A1 - Reinermann, Sophie A1 - Reiners, Philipp A1 - Roessler, Sebastian A1 - Ruppert, Thomas A1 - Scherbachenko, Alexander A1 - Vignesh, Ranjitha A1 - Wolfmueller, Meinhard A1 - Zwenzner, Hendrik A1 - Kuenzer, Claudia T1 - Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience JF - Remote Sensing N2 - Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper. KW - AVHRR KW - Earth Observation KW - harmonization KW - time series analysis KW - climate related trends KW - automatic processing KW - Europe KW - TIMELINE Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246134 SN - 2072-4292 VL - 13 IS - 18 ER - TY - JOUR A1 - Mayr, Stefan A1 - Kuenzer, Claudia A1 - Gessner, Ursula A1 - Klein, Igor A1 - Rutzinger, Martin T1 - Validation of earth observation time-series: a review for large-area and temporally dense land surface products JF - Remote Sensing N2 - Large-area remote sensing time-series offer unique features for the extensive investigation of our environment. Since various error sources in the acquisition chain of datasets exist, only properly validated results can be of value for research and downstream decision processes. This review presents an overview of validation approaches concerning temporally dense time-series of land surface geo-information products that cover the continental to global scale. Categorization according to utilized validation data revealed that product intercomparisons and comparison to reference data are the conventional validation methods. The reviewed studies are mainly based on optical sensors and orientated towards global coverage, with vegetation-related variables as the focus. Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land surface variables. The hereby corresponding validation efforts show only minor methodological diversification in the past two decades. To sustain comprehensive and standardized validation efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences between measurement and the true state has to be maintained. The promotion of novel approaches can, on the other hand, prove beneficial for various downstream applications, although typically only theoretical uncertainties are provided. KW - accuracy KW - error estimation KW - global KW - intercomparison KW - remote sensing KW - uncertainty Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193202 SN - 2072-4292 VL - 11 IS - 22 ER -