TY - JOUR A1 - Vogel, Sebastian A1 - Gossner, Martin M. A1 - Mergner, Ulrich A1 - Müller, Jörg A1 - Thorn, Simon T1 - Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach JF - Journal of Applied Ecology N2 - The enrichment of deadwood is essential for the conservation of saproxylic biodiversity in managed forests. However, existing strategies focus on a cost‐intensive increase of deadwood amount, while largely neglecting increasing deadwood diversity. Deadwood objects, that is logs and branches, from six tree species were experimentally sun exposed, canopy shaded and artificially shaded for 4 years, after which the alpha‐, beta‐ and gamma‐diversity of saproxylic beetles, wood‐inhabiting fungi and spiders were analysed. Analyses of beta‐diversity included the spatial distance between exposed deadwood objects. A random‐drawing procedure was used to identify the combination of tree species and sun exposure that yielded the highest gamma‐diversity at a minimum of exposed deadwood amount. In sun‐exposed plots, species numbers in logs were higher than in shaded plots for all taxa, while in branches we observed the opposite for saproxylic beetles. Tree species affected the species numbers only of saproxylic beetles and wood‐inhabiting fungi. The beta‐diversity of saproxylic beetles and wood‐inhabiting fungi among logs was influenced by sun exposure and tree species, but beta‐diversity of spiders by sun exposure only. For all saproxylic taxa recorded in logs, differences between communities increased with increasing spatial distance. A combination of canopy‐shaded Carpinus logs and sun‐exposed Populus logs resulted in the highest species numbers of all investigated saproxylic taxa among all possible combinations of tree species and sun‐exposure treatments. Synthesis and applications. We recommend incorporating the enrichment of different tree species and particularly the variation in sun exposure into existing strategies of deadwood enrichment. Based on the results of our study, we suggest to combine the logs of softwood broadleaf tree species (e.g. Carpinus, Populus), hardwood broadleaf tree species (e.g. Quercus) and coniferous tree species (e.g. Pinus) under different conditions of sun exposure and distribute them spatially in a landscape to maximize the beneficial effects on overall diversity. KW - broadleaf tree species KW - deadwood enrichment KW - forest conservation KW - forest management KW - saproxylic beetles KW - spiders KW - sun exposure KW - wood‐inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214614 VL - 57 IS - 10 SP - 2075 EP - 2085 ER - TY - JOUR A1 - Doerfler, Inken A1 - Cadotte, Marc W. A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Gossner, Martin M. A1 - Heibl, Christoph A1 - Bässler, Claus A1 - Thorn, Simon A1 - Seibold, Sebastian T1 - Restoration‐oriented forest management affects community assembly patterns of deadwood‐dependent organisms JF - Journal of Applied Ecology N2 - Land‐use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land‐use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi‐taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood‐dependent) beetles and fungi, as well as non‐saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional–phylogenetic diversity, community‐weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally–phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non‐saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional–phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management‐induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity. KW - assembly mechanisms KW - beech forest KW - community‐weighted mean KW - deadwood enrichment KW - habitat heterogeneity KW - restoration strategy KW - saproxylic species KW - species traits Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217918 VL - 57 IS - 12 SP - 2429 EP - 2440 ER -