TY - JOUR A1 - Kolominsky-Rabas, Peter L. A1 - Wiedmann, Silke A1 - Weingärtner, Michael A1 - Liman, Thomas G. A1 - Endres, Matthias A1 - Schwab, Stefan A1 - Buchfelder, Michael A1 - Heuschmann, Peter U. T1 - Time Trends in Incidence of Pathological and Etiological Stroke Subtypes during 16 Years: The Erlangen Stroke Project JF - Neuroepidemiology N2 - Background: Population-based data, which continuously monitors time trends in stroke epidemiology are limited. We investigated the incidence of pathological and etiological stroke subtypes over a 16 year time period. Methods: Data were collected within the Erlangen Stroke Project (ESPro), a prospective, population-based stroke register in Germany covering a total study population of 105,164 inhabitants (2010). Etiology of ischemic stroke was classified according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. Results: Between January 1995 and December 2010, 3,243 patients with first-ever stroke were documented. The median age was 75 and 55% were females. The total stroke incidence decreased over the 16 year study period in men (Incidence Rate Ratio 1995-1996 vs. 2009-2010 (IRR) 0.78; 95% CI 0.58-0.90) but not in women. Among stroke subtypes, a decrease in ischemic stroke incidence (IRR 0.73; 95% CI 0.57-0.93) and of large artery atherosclerotic stroke (IRR 0.27; 95% CI 0.12-0.59) was found in men and an increase of stroke due to small artery occlusion in women (IRR 2.33; 95% CI 1.39-3.90). Conclusions: Variations in time trends of pathological and etiological stroke subtypes were found between men and women that might be linked to gender differences in the development of major vascular risk factors in the study population. KW - stroke KW - epidemiology KW - incidence KW - time trends KW - register Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196503 SN - 0251-5350 SN - 1423-0208 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 44 IS - 1 ER - TY - JOUR A1 - Dong, Meng A1 - Böpple, Kathrin A1 - Thiel, Julia A1 - Winkler, Bernd A1 - Liang, Chunguang A1 - Schueler, Julia A1 - Davies, Emma J. A1 - Barry, Simon T. A1 - Metsalu, Tauno A1 - Mürdter, Thomas E. A1 - Sauer, Georg A1 - Ott, German A1 - Schwab, Matthias A1 - Aulitzky, Walter E. T1 - Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions JF - Cells N2 - Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air–liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses. KW - precision-cut tumor slices KW - perfusion culture KW - tumor microenvironment KW - ovarian tumor KW - individual drug responses KW - mouse xenografts KW - preclinical model KW - personalized medicine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311030 SN - 2073-4409 VL - 12 IS - 5 ER - TY - JOUR A1 - Britz, Sebastian A1 - Markert, Sebastian Matthias A1 - Witvliet, Daniel A1 - Steyer, Anna Maria A1 - Tröger, Sarah A1 - Mulcahy, Ben A1 - Kollmannsberger, Philip A1 - Schwab, Yannick A1 - Zhen, Mei A1 - Stigloher, Christian T1 - Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy JF - Frontiers in Neuroanatomy N2 - At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments. KW - FIB-SEM KW - 3D reconstruction KW - neuroanatomy KW - IL2 branching KW - amphids KW - Caenorhabditis elegans (C. elegans) KW - dauer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249622 SN - 1662-5129 VL - 15 ER -