TY - JOUR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Photochemical Chiral Symmetry Breaking in Alanine JF - Journal of Physical Chemistry A N2 - We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality. KW - circularly-polarized light KW - amino-acids KW - homochirality KW - molecular dynamics KW - dichroism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158557 UR - https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 VL - 45 IS - 120 ER - TY - JOUR A1 - Wildgruber, Moritz A1 - Aschenbrenner, Teresa A1 - Wendorff, Heiko A1 - Czubba, Maria A1 - Glinzer, Almut A1 - Haller, Bernhard A1 - Schiemann, Matthias A1 - Zimmermann, Alexander A1 - Berger, Hermann A1 - Eckstein, Hans-Henning A1 - Meier, Reinhard A1 - Wohlgemuth, Walter A. A1 - Libby, Peter A1 - Zernecke, Alma T1 - The "Intermediate" CD14\(^{++}\)CD16\(^{+}\) monocyte subset increases in severe peripheral artery disease in humans JF - Scientific Reports N2 - Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis. KW - peripheral artery occlusive disease KW - monocyte subset KW - humans Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167476 VL - 6 IS - 39483 ER -