TY - JOUR A1 - Werner, Rudolf A. A1 - Marcus, Charles A1 - Sheikhbahaei, Sara A1 - Solnes, Lilja B. A1 - Leal, Jeffrey P. A1 - Du, Yong A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. T1 - Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging JF - Clinical Nuclear Medicine N2 - PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7%, ĸ = 0.75) compared to semiquantification (86.2%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment. KW - Single-Photon-Emissions-Computertomographie KW - SPECT KW - Parkinson’s disease KW - Parkinsonism KW - DaTscan KW - 123I-Ioflupane KW - SPECT KW - SPECT/CT Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168181 SN - 1536-0229 VL - 44 IS - 1 ER - TY - INPR A1 - Nose, Naoko A1 - Werner, Rudolf A. A1 - Ueda, Yuichiro A1 - Günther, Katharina A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Fukushima, Kazuhito A1 - Edenhofer, Frank A1 - Higuchi, Takahiro T1 - Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay T2 - International Journal of Cardiology N2 - Background: Recent developments in cellular reprogramming technology enable the production of virtually unlimited numbers of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Although hiPSC-CM share various characteristic hallmarks with endogenous cardiomyocytes, it remains a question as to what extent metabolic characteristics are equivalent to mature mammalian cardiomyocytes. Here we set out to functionally characterize the metabolic status of hiPSC-CM in vitro by employing a radionuclide tracer uptake assay. Material and Methods: Cardiac differentiation of hiPSC was induced using a combination of well-orchestrated extrinsic stimuli such as WNT activation (by CHIR99021) and BMP signalling followed by WNT inhibition and lactate based cardiomyocyte enrichment. For characterization of metabolic substrates, dual tracer uptake studies were performed with \(^{18}\)F-2-fluoro-2-deoxy-D-glucose (\(^{18}\)F-FDG) and \(^{125}\)I-β-methyl-iodophenyl-pentadecanoic acid (\(^{125}\)I-BMIPP) as transport markers of glucose and fatty acids, respectively. Results: After cardiac differentiation of hiPSC, in vitro tracer uptake assays confirmed metabolic substrate shift from glucose to fatty acids that was comparable to those observed in native isolated human cardiomyocytes. Immunostaining further confirmed expression of fatty acid transport and binding proteins on hiPSC-CM. Conclusions: During in vitro cardiac maturation, we observed a metabolic shift to fatty acids, which are known as a main energy source of mammalian hearts, suggesting hi-PSC-CM as a potential functional phenotype to investigate alteration of cardiac metabolism in cardiac diseases. Results also highlight the use of available clinical nuclear medicine tracers as functional assays in stem cell research for improved generation of autologous differentiated cells for numerous biomedical applications. KW - tracer KW - Stammzelle KW - induced pluripotent stem cells KW - cardiomyocytes KW - fatty acid KW - stem cell therapy KW - hiPSC-CM Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163320 SN - 0167-5273 ER - TY - JOUR A1 - Werner, Rudolf A1 - Hänscheid, Heribert A1 - Leal, Jeffrey P. A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Lodge, Martin A. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - Impact of Tumor Burden on Quantitative [\(^{68}\)Ga]DOTATOC Biodistribution JF - Molecular Imaging and Biology N2 - Purpose: As has been previously reported, the somatostatin receptor (SSTR) imaging agent [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate ([\(^{68}\)Ga]DOTATATE) demonstrates lower uptake in normal organs in patients with a high neuroendocrine tumor (NET) burden. Given the higher SSTR affinity of [\(^{68}\)Ga]DOTATATE, we aimed to quantitatively investigate the biodistribution of [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ([68Ga]DOTATOC) to determine a potential correlation between uptake in normal organs and NET burden. Procedures: Of the 44 included patients, 36/44 (82%) patients demonstrated suspicious radiotracer uptake on [\(^{68}\)Ga]DOTATOC positron emission tomography (PET)/x-ray computed tomography (CT). Volumes of Interest (VOIs) were defined for tumor lesions and normal organs (spleen, liver, kidneys, adrenals). Mean body weight corrected standardized uptake value (SUV\(_{mean}\)) for normal organs was assessed and was used to calculate the corresponding mean specific activity uptake (Upt: fraction of injected activity per kg of tissue). For the entire tumor burden, SUV\(_{mean}\), maximum standardized uptake value (SUV\(_{max}\)), and the total mass (TBM) was calculated and the decay corrected tumor fractional uptake (TBU) was assessed. A Spearman’s rank correlation coefficient was used to determine the correlations between normal organ uptake and tumor burden. Results: The median SUV\(_{mean}\) was 18.7 for the spleen (kidneys, 9.2; adrenals, 6.8; liver, 5.6). For tumor burden, the median values were SUV\(_{mean}\) 6.9, SUV\(_{max}\) 35.5, TBM 42.6g, and TBU 1.2%. With increasing volume of distribution, represented by lean body mass and body surface area (BSA), Upt decreased in kidneys, liver, and adrenal glands and SUV\(_{mean}\) increased in the spleen. Correlation improved only for both kidneys and adrenals when the influence of the tumor uptake on the activity available for organ uptake was taken into account by the factor 1/(1-TBU). TBU was neither predictive for SUV\(_{mean}\) nor for Upt in any of the organs. The distribution of organ Upt vs. BSA/(1-TBU) were not different for patients with minor TBU (<3%) vs. higher TBU (>7%), indicating that the correlations observed in the present study are explainable by the body size effect. High tumor mass and uptake mitigated against G1 NET. Conclusions: There is no significant impact on normal organ biodistribution with increasing tumor burden on [\(^{68}\)Ga]DOTATOC PET/CT. Potential implications include increased normal organ dose with [\(^{177}\)Lu-DOTA]\(^0\)-D-Phe\(^1\)-Tyr\(^3\)-Octreotide and decreased absolute lesion detection with [\(^{68}\)Ga]DOTATOC in high NET burden. KW - somatostatin receptor KW - Positronen-Emissions-Tomografie KW - quantification KW - [68Ga]DOTATOC KW - neuroendocrine tumor KW - SSTR-PET KW - theranostics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170280 ER - TY - JOUR A1 - Kazuhino, Koshino A1 - Werner, Rudolf A. A1 - Toriumi, Fuijo A1 - Javadi, Mehrbod S. A1 - Pomper, Martin G. A1 - Solnes, Lilja B. A1 - Verde, Franco A1 - Higuchi, Takahiro A1 - Rowe, Steven P. T1 - Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images JF - Tomography N2 - Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40%-60%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45% and 71% as real magnetic resonance imaging images (NNRs, 24%, 40%, and 44%). In contradistinction, 44% and 70% of the real images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications. KW - AI KW - Magnetresonanztomografie KW - artificial intelligence KW - magnetic resonance imaging KW - MRI KW - DCGAN KW - GAN KW - stroke KW - machine learning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172185 VL - 4 IS - 4 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans JF - Clinical and Translational Imaging N2 - Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run. KW - single photon emission computed tomography: sympathetic nerve KW - Positronen-Emissions-Tomografie KW - 18F-LMI1195 KW - 11C-hydroxyephedrine KW - 123I-metaiodobenzylguanidine KW - positron emission tomography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163628 SN - 2281-5872 ER - TY - JOUR A1 - Nose, Naoko A1 - Werner, Rudolf A. A1 - Ueda, Yuichiro A1 - Günther, Katharina A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Fukushima, Kazuhito A1 - Edenhofer, Frank A1 - Higuchi, Takahiro T1 - Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay JF - International Journal of Cardiology N2 - BACKGROUND: Recent developments in cellular reprogramming technology enable the production of virtually unlimited numbers of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Although hiPSC-CM share various characteristic hallmarks with endogenous cardiomyocytes, it remains a question as to what extent metabolic characteristics are equivalent to mature mammalian cardiomyocytes. Here we set out to functionally characterize the metabolic status of hiPSC-CM in vitro by employing a radionuclide tracer uptake assay. MATERIAL AND METHODS: Cardiac differentiation of hiPSC was induced using a combination of well-orchestrated extrinsic stimuli such as WNT activation (by CHIR99021) and BMP signalling followed by WNT inhibition and lactate based cardiomyocyte enrichment. For characterization of metabolic substrates, dual tracer uptake studies were performed with \(^{18}\)F‑2‑fluoro‑2‑deoxy‑d‑glucose (\(^{18}\)F-FDG) and \(^{125}\)I‑β‑methyl‑iodophenyl‑pentadecanoic acid (\(^{125}\)I-BMIPP) as transport markers of glucose and fatty acids, respectively. RESULTS: After cardiac differentiation of hiPSCs, in vitro tracer uptake assays confirmed metabolic substrate shift from glucose to fatty acids that was comparable to those observed in native isolated human cardiomyocytes. Immunostaining further confirmed expression of fatty acid transport and binding proteins on hiPSC-CM. CONCLUSIONS: During in vitro cardiac maturation, we observed a metabolic shift to fatty acids, which are known as a main energy source of mammalian hearts, suggesting hi-PSC-CM as a potential functional phenotype to investigate alteration of cardiac metabolism in cardiac diseases. Results also highlight the use of available clinical nuclear medicine tracers as functional assays in stem cell research for improved generation of autologous differentiated cells for numerous biomedical applications. KW - tracer KW - Stammzelle KW - induced pluripotent stem cells KW - cardiomyocytes KW - fatty acid KW - stem cell therapy KW - hiPSC-CM Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170699 VL - 269 ER - TY - CHAP A1 - Werner, Rudolf A1 - Higuchi, Takahiro A1 - Muegge, Dirk A1 - Javadi, Mehrbod S. A1 - Märkl, Bruno A1 - Aulmann, Christoph A1 - Buck, Andreas K. A1 - Fassnacht, Martin A1 - Lapa, Constantin A1 - Kreissl, Michael C. T1 - Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment T2 - Journal of Nuclear Medicine N2 - Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline \(^{18}\)F-FDG PET prior to and a follow-up \(^{18}\)F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of \(^{18}\)F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline \(^{18}\)F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5% (SUV(LN)max <7.25, 4.3 y; p=0.03). Accordingly, preserved tumor metabolism in the follow-up PET (SUV(MTS)max >2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis. KW - 18F-FDG KW - vandetanib KW - TKI KW - PET KW - positron emission tomography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161147 UR - http://jnm.snmjournals.org/content/58/supplement_1/169 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Takahiro Higuchi, Dirk O. Muegge, Mehrbod S. Javadi, B. Märkl, C. Aulmann, Andreas K. Buck, Martin Fassnacht, Constantin Lapa, Michael C. Kreissl. Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment. J Nucl Med. May 1, 2017; vol. 58 no. supplement 1:169. © SNMMI. VL - 58 IS - no. supplement 1 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Sheikhbahaei, Sara A1 - Jones, Krystyna M. A1 - Javadi, Mehrbod S. A1 - Solnes, Lilja B. A1 - Ross, Ashley E. A1 - Allaf, Mohamad E. A1 - Pienta, Kenneth J. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Micheal A. A1 - Rowe, Steven P. T1 - Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted \(^{18}\)F-DCFPyL in peripheral ganglia JF - Annals of Nuclear Medicine N2 - Objective: Radiotracers targeting prostate-specific membrane antigen (PSMA) have increasingly been recognized as showing uptake in a number of normal structures, anatomic variants, and non-prostate-cancer pathologies. We aimed to explore the frequency and degree of uptake in peripheral ganglia in patients undergoing PET with the PSMA-targeted agent \(^{18}\)F-DCFPyL. Methods: A total of 98 patients who underwent \(^{18}\)F-DCFPyL PET/CT imaging were retrospectively analyzed. This included 76 men with prostate cancer (PCa) and 22 patients with renal cell carcinoma (RCC; 13 men, 9 women). Scans were evaluated for uptake in the cervical, stellate, celiac, lumbar and sacral ganglia. Maximum standardized uptake value corrected to body weight (SUV\(_{max}\)), and maximum standardized uptake value corrected to lean body mass (SUL\(_{max}\)) were recorded for all ganglia with visible uptake above background. Ganglia-to-background ratios were calculated by dividing the SUV\(_{max}\) and SUL\(_{max}\) values by the mean uptake in the ascending aorta (Aortamean) and the right gluteus muscle (Gluteusmean). Results: Overall, 95 of 98 (96.9%) patients demonstrated uptake in at least one of the evaluated peripheral ganglia. With regard to the PCa cohort, the most frequent sites of radiotracer accumulation were lumbar ganglia (55/76, 72.4%), followed by the cervical ganglia (51/76, 67.1%). Bilateral uptake was found in the majority of cases [lumbar 44/55 (80%) and cervical 30/51 (58.8%)]. Additionally, discernible radiotracer uptake was recorded in 50/76 (65.8%) of the analyzed stellate ganglia and in 45/76 (59.2%) of the celiac ganglia, whereas only 5/76 (6.6%) of the sacral ganglia demonstrated \(^{18}\)F-DCFPyL accumulation. Similar findings were observed for patients with RCC, with the most frequent locations of radiotracer uptake in both the lumbar (20/22, 90.9%) and cervical ganglia (19/ 22, 86.4%). No laterality preference was found in mean PSMA-ligand uptake for either the PCa or RCC cohorts. Conclusion: As PSMA-targeted agents become more widely disseminated, the patterns of uptake in structures that are not directly relevant to patients’ cancers must be understood. This is the first systematic evaluation of the uptake of \(^{18}\)F-DCFPyL in ganglia demonstrating a general trend with a descending frequency of radiotracer accumulation in lumbar, cervical, stellate, celiac, and sacral ganglia. The underlying biology that leads to variability of PSMA-targeted radiotracers in peripheral ganglia is not currently understood, but may provide opportunities for future research. KW - 18F-DCFPL KW - Positronen-Emissions-Tomografie KW - Prostata KW - PSMA KW - Ganglia KW - Pitfall KW - PET KW - Tracer KW - Radiotracer KW - Imaging pitfalls KW - Prostate Cancer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166971 SN - 0914-7187 VL - 31 IS - 9 ER - TY - JOUR A1 - Chen, Xinyu A1 - Werner, Rudolf A. A1 - Javadi, Mehrbod S. A1 - Maya, Yoshifumi A1 - Decker, Michael A1 - Lapa, Constantin A1 - Herrmann, Ken A1 - Higuchi, Takahiro T1 - Radionuclide imaging of neurohormonal system of the heart JF - Theranostics N2 - Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. KW - SPECT KW - radiotracer KW - heart failure KW - cardiac neurohormonal system KW - nuclear cardiology KW - PET Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149205 VL - 5 IS - 6 ER -