TY - JOUR A1 - Rostás, Michael A1 - Bollmann, Felix A1 - Saville, David A1 - Riedel, Michael T1 - Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb JF - PeerJ N2 - The number of plants pollinated by ants is surprisingly low given the abundance of ants and the fact that they are common visitors of angiosperms. Generally ants are considered as nectar robbers that do not provide pollination service. We studied the pollination system of the endangered dry grassland forb Euphorbia seguieriana and found two ant species to be the most frequent visitors of its flowers. Workers of Formica cunicularia carried five times more pollen than smaller Tapinoma erraticum individuals, but significantly more viable pollen was recovered from the latter. Overall, the viability of pollen on ant cuticles was significantly lower (p < 0.001)-presumably an antibiotic effect of the metapleural gland secretion. A marking experiment suggested that ants were unlikely to facilitate outcrossing as workers repeatedly returned to the same individual plant. In open pollinated plants and when access was given exclusively to flying insects, fruit set was nearly 100%. In plants visited by ants only, roughly one third of flowers set fruit, and almost none set fruit when all insects were excluded. The germination rate of seeds from flowers pollinated by flying insects was 31 +/- 7% in contrast to 1 +/- 1% resulting from ant pollination. We conclude that inbreeding depression may be responsible for the very low germination rate in ant pollinated flowers and that ants, although the most frequent visitors, play a negligible or even deleterious role in the reproduction of E. seguieriana. Our study reiterates the need to investigate plant fitness effects beyond seed set in order to confirm ant-plant mutualisms. KW - Ants KW - Breeding system KW - Geitonogamy KW - Germination KW - Inbreeding depression KW - Metapleural gland KW - Siberian spurge KW - Foraging behaviour KW - Pollen KW - Ecology KW - Entomology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227053 VL - 6 ER - TY - JOUR A1 - Joensuu, Johanna A1 - Altimir, Nuria A1 - Hakola, Hannele A1 - Rostás, Michael A1 - Raivonen, Maarit A1 - Vestenius, Mika A1 - Aaltonen, Hermanni A1 - Riederer, Markus A1 - Bäck, Jaana T1 - Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes JF - Atmospheric Chemistry and Physics N2 - Biogenic volatile organic compounds (BVOCs) produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L.) and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry. KW - needle surface waxes KW - biogenic volatile organic compounds KW - Pinus sylvestris L. KW - atmospheric chemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171324 VL - 16 IS - 12 ER - TY - JOUR A1 - Rostás, Michael A1 - Blassmann, Katrin T1 - Insects had it first: surfactants as a defence against predators N2 - Insects have evolved an astonishing array of defences to ward off enemies. Well-known and widespread is the regurgitation of oral secretions (OS), fluids that repel attacking predators. In herbivores, the effectiveness of OS has been ascribed so far to the presence of deterrent secondary metabolites sequestered from the host plant. This notion implies, however, that generalists experience less protection on plants with low amounts of secondary metabolites or with compounds ineffective against potential enemies. Resolving the dilemma, we describe a novel defence mechanism that is independent of deterrents as it relies on the OS’ intrinsic detergent properties. The OS of Spodoptera exigua (and other species) was found to be highly amphiphilic and well capable of wetting the hydrophobic cuticle of predatory ants. As a result, affected ants stopped attacking and engaged in extensive cleansing. The presence of surfactants was sufficient to explain the defensive character of herbivore OS. We hypothesize that detergency is a common but unrecognised mode of defence which provides a base level of protection that may or may not be further enhanced by plant-derived deterrents. Our study also proves that insects ‘invented’ the use of defensive surfactants long before modern agriculture had started applying them as insecticides. KW - Pflanzenfressende Insekten KW - Grenzflächenaktiver Stoff KW - Ameisen KW - Zuckerrübeneule KW - Abwehr KW - Oralsekret KW - anti-predator defence KW - caterpillars KW - regurgitation KW - secondary metabolites KW - biosurfactants Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35031 ER - TY - JOUR A1 - Rostás, Michael A1 - Maag, Daniel A1 - Ikegami, Makihiko A1 - Inbar, Moshe T1 - Gall volatiles defend aphids against a browsing mammal JF - BMC Evolutionary Biology N2 - Background: Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results: Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions: Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. KW - capra hircus KW - enemy hypothesis KW - extended phenotype KW - herbivory KW - intraguild predation KW - plant defence KW - tannins KW - terpenes KW - volatile organic compounds Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128687 VL - 13 IS - 193 ER - TY - JOUR A1 - Rostás, Michael A1 - Eggert, Katharina T1 - Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis N2 - Plants attacked by herbivorous insects emit a blend of volatile compounds that serve as important host location cues for parasitoid wasps. Variability in the released blend may exist on the whole-plant and within-plant level and can affect the foraging efficiency of parasitoids. We comprehensively assessed the kinetics of herbivore-induced volatiles in soybean in the context of growth stage, plant organ, leaf age, and direction of signal transport. The observed patterns were used to test the predictions of the optimal defence hypothesis (OD). We found that plants in the vegetative stage emitted 10-fold more volatiles per biomass than reproductive plants and young leaves emitted >2.6 times more volatiles than old leaves. Systemic induction in single leaves was stronger and faster by one day in acropetal than in basipetal direction while no systemic induction was found in pods. Herbivore-damaged leaves had a 200-fold higher release rate than pods. To some extent these findings support the OD: i) indirect defence levels were increased in response to herbivory and ii) young leaves, which are more valuable, emitted more volatiles. However, the fact that reproductive structures emitted no constitutive or very few inducible volatiles is in seeming contrast to the OD predictions. We argue that in case of volatile emission the OD can only partially explain the patterns of defence allocation due to the peculiarity that volatiles act as signals not as toxins or repellents. KW - Chemische Ökologie KW - Pflanzeninhaltsstoff KW - Verteidigung KW - Pflanzenfressende Insekten KW - Indirekte Abwehr KW - Sojabohne KW - Spodoptera frugiperda KW - Tritrophische Interaktionen KW - indirect plant defence KW - soybean KW - Spodoptera frugiperda KW - tritrophic interactions Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26991 ER - TY - JOUR A1 - Rostás, Michael T1 - The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro N2 - Maize seedlings contain high amounts of glucosidically bound 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). The effects of DIMBOA on the feeding behaviour and performance of two noctuids, Spodoptera exigua Hübner and S. frugiperda Smith, were compared. The question was raised whether S. frugiperda, preferring maize and other Poaceae, is better adapted to DIMBOA than S. exigua. In addition, the effects of DIMBOA on the mycelial growth of the plant pathogen Setosphaeria turcica Leonard et Suggs (causal agent of northern corn leaf blight) was assessed in vitro. DIMBOA had an antifeedant effect on S. exigua but stimulated feeding in S. frugiperda in dual-choice experiments. In a no-choice setup, larvae of S. exigua gained less biomass and had a prolonged development when feeding on an artificial diet containing DIMBOA. However, pupal weight was not significantly different between treatments. In contrast, larvae of S. frugiperda were not affected by DIMBOA. Strong detrimental effects of DIMBOA were found on the mycelial growth of the pathogen S. turcica. KW - Eulen KW - Pilzbefall KW - Mais KW - DIMBOA KW - Abwehr KW - DIMBOA KW - Performance KW - Spodoptera KW - Fungus KW - Zea mays Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35079 ER - TY - GEN A1 - Rostás, Michael A1 - Ruf, Daniel A1 - Zabka, Vanessa A1 - Hildebrandt, Ulrich T1 - Plant surface wax affects parasitoid's response to host footprints N2 - The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants (cer-za.126, cer-yp.949) and wild type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones. KW - Brackwespen KW - Wirtsfindung KW - Gerste KW - Mutante KW - Pflanzenwachs Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29201 ER - TY - JOUR A1 - Joensuu, Johanna A1 - Altimir, Nuria A1 - Hakola, Hannele A1 - Rostás, Michael A1 - Raivonen, Maarit A1 - Vestenius, Mika A1 - Aaltonen, Hermanni A1 - Riederer, Markus A1 - Bäck, Jaana T1 - Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes JF - Atmospheric Chemistry and Physics N2 - Biogenic volatile organic compounds (BVOCs) produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L.) and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry. KW - Biogenic KW - volatile KW - organic KW - compounds Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198547 VL - 16 ER -