TY - JOUR A1 - Kaupmann, Klemens A1 - Sendtner, Michael A1 - Stöckli, Kurt A. A1 - Jockusch, Harald T1 - The gene of ciliary neurotrophic factor (cntf) maps to murine chromosome 19 and its expression is not affected in the hereditary motoneuron disease 'wobbler' of the mouse N2 - The cDNA for ciliary neurotrophic factor (CNTF), a polypeptide involved in the survival of motoneurons in mammals, has recently been cloned (Stöckli et al., Nature, 342, 920 - 923, 1989; Lin et al. Science, 246, 1023 - 1025, 1989). We have now localized the corresponding gene Cntf to chromosome 19 in the mouse, using an interspecific cross between Mus spretus and Mus musculus domesticus. The latter was carrying the gene wobbler (wr) for spinal muscular atrophy. DNA was prepared from backcross individuals and typed for the segregation of species-specific Cntf restriction fragments in relation to DNA markers of known chromosomal location. The M.spretus allele of Cntf cosegregated with chromosome 19 markers and mapped closely to Ly-1, to a region of mouse chromosome 19 with conserved synteny to human chromosome 11q. Cntf is not linked to wr, and the expression of CNTF mRNA and protein appears close to normal in facial and sciatic nerves, of affected (wr/wr) mice, suggesting that motoneuron degeneration of wobbler mice has its origin in defects other than reduced CNTF expression. KW - Mus spretus KW - interspeific backcross KW - spinal muscular atrophy KW - linkage KW - restriction fragment length polymorphism Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42626 ER - TY - JOUR A1 - Deng, Chunchu A1 - Reinhard, Sebastian A1 - Hennlein, Luisa A1 - Eilts, Janna A1 - Sachs, Stefan A1 - Doose, Sören A1 - Jablonka, Sibylle A1 - Sauer, Markus A1 - Moradi, Mehri A1 - Sendtner, Michael T1 - Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy JF - Translational Neurodegeneration N2 - Background: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. KW - spinal muscular atrophy KW - BDNF stimulation KW - dynamics of ribosomal assembly KW - presynaptic ER dynamics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300649 SN - 2047-9158 VL - 11 IS - 1 ER - TY - JOUR A1 - Franco-Espin, Julio A1 - Gatius, Alaó A1 - Armengol, José Ángel A1 - Arumugam, Saravanan A1 - Moradi, Mehri A1 - Sendtner, Michael A1 - Calderó, Jordi A1 - Tabares, Lucia T1 - SMN is physiologically downregulated at wild-type motor nerve terminals but aggregates together with neurofilaments in SMA mouse models JF - Biomolecules N2 - Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of β-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal. KW - spinal muscular atrophy KW - motor neuron degeneration KW - SMN granules KW - neuromuscular junction KW - β-actin mRNA KW - MAP1B KW - neurofilaments Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290263 SN - 2218-273X VL - 12 IS - 10 ER -