TY - JOUR A1 - Yan, Yan A1 - Hong, Ni A1 - Chen, Tiansheng A1 - Li, Mingyou A1 - Wang, Tiansu A1 - Guan, Guijun A1 - Qiao, Yongkang A1 - Chen, Songlin A1 - Schartl, Manfred A1 - Li, Chang-Ming A1 - Hong, Yunhan T1 - p53 Gene Targeting by Homologous Recombination in Fish ES Cells JF - PLoS One N2 - Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology. KW - mouse KW - in-vitro KW - drug selection KW - chimera formation KW - medakafish oryzias latipes KW - embryonic stem-cells KW - zebrafish KW - differentiation KW - cultures KW - pluripotency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133416 VL - 8 IS - 3 ER - TY - JOUR A1 - Salker, Madhuri S. A1 - Singh, Yogesh A1 - Zeng, Ni A1 - Chen, Hong A1 - Zhang, Shaqiu A1 - Umbach, Anja T. A1 - Fakhri, Hajar A1 - Kohlhofer, Ursula A1 - Quintanilla-Martinez, Leticia A1 - Durairaj, Ruban R. Peter A1 - Barros, Flavio S. V. A1 - Vrljicak, Pavle A1 - Ott, Sascha A1 - Brucker, Sara Y. A1 - Wallwiener, Diethelm A1 - Madunić, Ivana Vrhovac A1 - Breljak, Davorka A1 - Sabolić, Ivan A1 - Koepsell, Hermann A1 - Brosens, Jan J. A1 - Lang, Florian T1 - Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy JF - Scientific Reports N2 - Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{−/−}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{−/−}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome. KW - biology KW - embryology KW - intrauterine growth KW - paediatric research Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173814 VL - 7 ER -