TY - JOUR A1 - Salker, Madhuri S. A1 - Singh, Yogesh A1 - Zeng, Ni A1 - Chen, Hong A1 - Zhang, Shaqiu A1 - Umbach, Anja T. A1 - Fakhri, Hajar A1 - Kohlhofer, Ursula A1 - Quintanilla-Martinez, Leticia A1 - Durairaj, Ruban R. Peter A1 - Barros, Flavio S. V. A1 - Vrljicak, Pavle A1 - Ott, Sascha A1 - Brucker, Sara Y. A1 - Wallwiener, Diethelm A1 - Madunić, Ivana Vrhovac A1 - Breljak, Davorka A1 - Sabolić, Ivan A1 - Koepsell, Hermann A1 - Brosens, Jan J. A1 - Lang, Florian T1 - Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy JF - Scientific Reports N2 - Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{−/−}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{−/−}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome. KW - biology KW - embryology KW - intrauterine growth KW - paediatric research Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173814 VL - 7 ER - TY - JOUR A1 - Notz, Quirin A1 - Heyland, Daren K. A1 - Lee, Zheng-Yii A1 - Menger, Johannes A1 - Herrmann, Johannes A1 - Chillon, Thilo S. A1 - Fremes, Stephen A1 - Mohammadi, Siamak A1 - Elke, Gunnar A1 - Mazer, C. David A1 - Hill, Aileen A1 - Velten, Markus A1 - Ott, Sascha A1 - Kleine-Brueggeney, Maren A1 - Meybohm, Patrick A1 - Schomburg, Lutz A1 - Stoppe, Christian T1 - Identifying a target group for selenium supplementation in high-risk cardiac surgery: a secondary analysis of the SUSTAIN CSX trial JF - Intensive Care Medicine Experimental N2 - Background Recent data from the randomized SUSTAIN CSX trial could not confirm clinical benefits from perioperative selenium treatment in high-risk cardiac surgery patients. Underlying reasons may involve inadequate biosynthesis of glutathione peroxidase (GPx3), which is a key mediator of selenium's antioxidant effects. This secondary analysis aimed to identify patients with an increase in GPx3 activity following selenium treatment. We hypothesize that these responders might benefit from perioperative selenium treatment. Methods Patients were selected based on the availability of selenium biomarker information. Four subgroups were defined according to the patient's baseline status, including those with normal kidney function, reduced kidney function, selenium deficiency, and submaximal GPx3 activity. Results Two hundred and forty-four patients were included in this analysis. Overall, higher serum concentrations of selenium, selenoprotein P (SELENOP) and GPx3 were correlated with less organ injury. GPx3 activity at baseline was predictive of 6-month survival (AUC 0.73; p = 0.03). While selenium treatment elevated serum selenium and SELENOP concentrations but not GPx3 activity in the full patient cohort, subgroup analyses revealed that GPx3 activity increased in patients with reduced kidney function, selenium deficiency and low to moderate GPx3 activity. Clinical outcomes did not vary between selenium treatment and placebo in any of these subgroups, though the study was not powered to conclusively detect differences in outcomes. Conclusions The identification of GPx3 responders encourages further refined investigations into the treatment effects of selenium in high-risk cardiac surgery patients. KW - selenium KW - glutathione peroxidase KW - cardiac surgery KW - critical care KW - oxidative stress KW - SUSTAIN CSX Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357196 VL - 11 ER -