TY - JOUR A1 - Hoffmann, Jan V. A1 - Janssen, Jan P. A1 - Kanno, Takayuki A1 - Shibutani, Takayuki A1 - Onoguchi, Masahisa A1 - Lapa, Constantin A1 - Grunz, Jan-Peter A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging JF - EJNMMI Physics N2 - Background Small-animal single-photon emission computed tomography (SPECT) systems with multi-pinhole collimation and large stationary detectors have advantages compared to systems with moving small detectors. These systems benefit from less labour-intensive maintenance and quality control as fewer prone parts are moving, higher accuracy for focused scans and maintaining high resolution with increased sensitivity due to focused pinholes on the field of view. This study aims to investigate the performance of a novel ultra-high-resolution scanner with two-detector configuration (U-SPECT5-E) and to compare its image quality to a conventional micro-SPECT system with three stationary detectors (U-SPECT\(^+\)). Methods The new U-SPECT5-E with two stationary detectors was used for acquiring data with \(^{99m}\)Tc-filled point source, hot-rod and uniformity phantoms to analyse sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR). Three dedicated multi-pinhole mouse collimators with 75 pinholes each and 0.25-, 0.60- and 1.00-mm pinholes for extra ultra-high resolution (XUHR-M), general-purpose (GP-M) and ultra-high sensitivity (UHS-M) imaging were examined. For CNR analysis, four different activity ranges representing low- and high-count settings were investigated for all three collimators. The experiments for the performance assessment were repeated with the same GP-M collimator in the three-detector U-SPECT\(^+\) for comparison. Results Peak sensitivity was 237 cps/MBq (XUHR-M), 847 cps/MBq (GP-M), 2054 cps/MBq (UHS-M) for U-SPECT5-E and 1710 cps/MBq (GP-M) for U-SPECT\(^+\). In the visually analysed sections of the reconstructed mini Derenzo phantoms, rods as small as 0.35 mm (XUHR-M), 0.50 mm (GP-M) for the two-detector as well as the three-detector SPECT and 0.75 mm (UHS-M) were resolved. Uniformity for maximum resolution recorded 40.7% (XUHR-M), 29.1% (GP-M, U-SPECT5-E), 16.3% (GP-M, U-SPECT\(^+\)) and 23.0% (UHS-M), respectively. UHS-M reached highest CNR values for low-count images; for rods smaller than 0.45 mm, acceptable CNR was only achieved by XUHR-M. GP-M was superior for imaging rods sized from 0.60 to 1.50 mm for intermediate activity concentrations. U-SPECT5-E and U-SPECT+ both provided comparable CNR. Conclusions While uniformity and sensitivity are negatively affected by the absence of a third detector, the investigated U-SPECT5-E system with two stationary detectors delivers excellent spatial resolution and CNR comparable to the performance of an established three-detector-setup. KW - small-animal imaging KW - SPECT KW - mouse KW - ollimator KW - post-reconstruction filtering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230361 VL - 7 ER - TY - JOUR A1 - Janssen, Jan P. A1 - Hoffmann, Jan V. A1 - Kanno, Takayuki A1 - Nose, Naoko A1 - Grunz, Jan-Peter A1 - Onoguchi, Masahisa A1 - Chen, Xinyu A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging JF - Scientific Reports N2 - We aimed to investigate the image quality of the U-SPECT5/CT E-Class a micro single-photon emission computed tomography (SPECT) system with two large stationary detectors for visualization of rat hearts and bones using clinically available \(^{99m}\)Tc-labelled tracers. Sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR) of the small-animal SPECT scanner were investigated in phantom studies using an ultra-high-resolution rat and mouse multi-pinhole collimator (UHR-RM). Point source, hot-rod, and uniform phantoms with \(^{99m}\)Tc-solution were scanned for high-count performance assessment and count levels equal to animal scans, respectively. Reconstruction was performed using the similarity-regulated ordered-subsets expectation maximization (SROSEM) algorithm with Gaussian smoothing. Rats were injected with similar to 100 MBq [\(^{99m}\)TcTc-MIBI or similar to 150 MBq [\(^{99m}\)Tc]Tc-HMDP and received multi-frame micro-SPECT imaging after tracer distribution. Animal scans were reconstructed for three different acquisition times and post-processed with different sized Gaussian filters. Following reconstruction, CNR was calculated and image quality evaluated by three independent readers on a five-point scale from 1="very poor" to 5="very good". Point source sensitivity was 567 cps/MBq and radioactive rods as small as 1.2 mm were resolved with the UHR-RM collimator. Collimator-dependent uniformity was 55.5%. Phantom CNR improved with increasing rod size, filter size and activity concentration. Left ventricle and bone structures were successfully visualized in rat experiments. Image quality was strongly affected by the extent of post-filtering, whereas scan time did not have substantial influence on visual assessment. Good image quality was achieved for resolution range greater than 1.8 mm in bone and 2.8 mm in heart. The recently introduced small animal SPECT system with two stationary detectors and UHR-RM collimator is capable to provide excellent image quality in heart and bone scans in a rat using standardized reconstruction parameters and appropriate post-filtering. However, there are still challenges in achieving maximum system resolution in the sub-millimeter range with in vivo settings under limited injection dose and acquisition time. KW - small animal SPECT KW - HMDP hydroxymethylene diphosphonate KW - skeletal KW - quality KW - scanner Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230616 VL - 10 ER - TY - JOUR A1 - Kaussner, Y. A1 - Kuraszkiewicz, A. M. A1 - Schoch, S. A1 - Markel, Petra A1 - Hoffmann, S. A1 - Baur-Streubel, R. A1 - Kenntner-Mabiala, R. A1 - Pauli, P. T1 - Treating patients with driving phobia by virtual reality exposure therapy – a pilot study JF - PLoS ONE N2 - Objectives Virtual reality exposure therapy (VRET) is a promising treatment for patients with fear of driving. The present pilot study is the first one focusing on behavioral effects of VRET on patients with fear of driving as measured by a post-treatment driving test in real traffic. Methods The therapy followed a standardized manual including psychotherapeutic and medical examination, two preparative psychotherapy sessions, five virtual reality exposure sessions, a final behavioral avoidance test (BAT) in real traffic, a closing session, and two follow-up phone assessments after six and twelve weeks. VRE was conducted in a driving simulator with a fully equipped mockup. The exposure scenarios were individually tailored to the patients’ anxiety hierarchy. A total of 14 patients were treated. Parameters on the verbal, behavioral and physiological level were assessed. Results The treatment was helpful to overcome driving fear and avoidance. In the final BAT, all patients mastered driving tasks they had avoided before, 71% showed an adequate driving behavior as assessed by the driving instructor, and 93% could maintain their treatment success until the second follow-up phone call. Further analyses suggest that treatment reduces avoidance behavior as well as symptoms of posttraumatic stress disorder as measured by standardized questionnaires (Avoidance and Fusion Questionnaire: p < .10, PTSD Symptom Scale–Self Report: p < .05). Conclusions VRET in driving simulation is very promising to treat driving fear. Further research with randomized controlled trials is needed to verify efficacy. Moreover, simulators with lower configuration stages should be tested for a broad availability in psychotherapy. KW - Mental health therapies KW - Heart rate KW - Animal behavior KW - Instructors KW - Psychometrics KW - Post-traumatic stress disorder KW - Fear KW - Pilot studies Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201051 VL - 15 IS - 1 ER - TY - JOUR A1 - Buhl, Timo A1 - Beissert, Stefan A1 - Gaffal, Evelyn A1 - Goebeler, Matthias A1 - Hertl, Michael A1 - Mauch, Cornelia A1 - Reich, Kristian A1 - Schmidt, Enno A1 - Schön, Michael P. A1 - Sticherling, Michael A1 - Sunderkötter, Cord A1 - Traidl‐Hoffmann, Claudia A1 - Werfel, Thomas A1 - Wilsman‐Theis, Dagmar A1 - Worm, Margitta T1 - COVID‐19 and implications for dermatological and allergological diseases JF - JDDG: Journal der Deutschen Dermatologischen Gesellschaft N2 - COVID‐19, caused by the coronavirus SARS‐CoV‐2, has become pandemic. A further level of complexity opens up as soon as we look at diseases whose pathogenesis and therapy involve different immunological signaling pathways, which are potentially affected by COVID‐19. Medical treatments must often be reassessed and questioned in connection with this infection. This article summarizes the current knowledge of COVID‐19 in the light of major dermatological and allergological diseases. It identifies medical areas lacking sufficient data and draws conclusions for the management of our patients during the pandemic. We focus on common chronic inflammatory skin diseases with complex immunological pathogenesis: psoriasis, eczema including atopic dermatitis, type I allergies, autoimmune blistering and inflammatory connective tissue diseases, vasculitis, and skin cancers. Since several other inflammatory skin diseases display related or comparable immunological reactions, clustering of the various inflammatory dermatoses into different disease patterns may help with therapeutic decisions. Thus, following these patterns of skin inflammation, our review may supply treatment recommendations and thoughtful considerations for disease management even beyond the most frequent diseases discussed here. KW - COVID-19 KW - dermatology KW - allergies Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217860 VL - 18 IS - 8 SP - 815 EP - 824 ER -