TY - JOUR A1 - Fan, Sook-Ha A1 - Ebner, Patrick A1 - Reichert, Sebstian A1 - Hertlein, Tobias A1 - Zabel, Susanne A1 - Lankapalli, Aditya Kumar A1 - Nieselt, Kay A1 - Ohlsen, Knut A1 - Götz, Friedrich T1 - MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels JF - Nature Communications N2 - The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter. KW - bacterial physiology KW - bacteriology KW - pathogens Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227624 VL - 10 ER - TY - JOUR A1 - Nguyen, Minh-Thu A1 - Saising, Jongkon A1 - Tribelli, Paula Maria A1 - Nega, Mulugeta A1 - Diene, Seydina M. A1 - François, Patrice A1 - Schrenzel, Jacques A1 - Spröer, Cathrin A1 - Bunk, Boyke A1 - Ebner, Patrick A1 - Hertlein, Tobias A1 - Kumari, Nimerta A1 - Härtner, Thomas A1 - Wistuba, Dorothee A1 - Voravuthikunchai, Supayang P. A1 - Mäder, Ulrike A1 - Ohlsen, Knut A1 - Götz, Friedrich T1 - Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus JF - Frontiers in Microbiology N2 - Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent. KW - antibiotic KW - Gram-positive bacteria KW - rhodomyrtone KW - Staphylococcus KW - membrane active Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224117 VL - 10 ER -