TY - JOUR A1 - Ranger, Christopher M. A1 - Biedermann, Peter HW A1 - Phuntumart, Vipaporn A1 - Beligala, Gayathri U. A1 - Ghosh, Satyaki A1 - Palmquist, Debra E. A1 - Mueller, Robert A1 - Barnett, Jenny A1 - Schultz, Peter B. A1 - Reding, Michael E. A1 - Benz, J. Philipp T1 - Symbiont selection via alcohol benefits fungus farming by ambrosia beetles JF - Proceedings of the National Academy of Sciences N2 - Animal-microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses. KW - fungus-farming insects KW - plant-insect-microbe interactions KW - symbiosis KW - insect-fungus mutualism KW - host screening Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224953 VL - 115 IS - 17 ER - TY - JOUR A1 - Benz, Peter M. A1 - Merkel, Carla J. A1 - Offner, Kristin A1 - Abeßer, Marco A1 - Ullrich, Melanie A1 - Fischer, Tobias A1 - Bayer, Barbara A1 - Wagner, Helga A1 - Gambaryan, Stepan A1 - Ursitti, Jeanine A. A1 - Adham, Ibrahim M. A1 - Linke, Wolfgang A. A1 - Feller, Stephan M. A1 - Fleming, Ingrid A1 - Renné, Thomas A1 - Frantz, Stefan A1 - Unger, Andreas A1 - Schuh, Kai T1 - Mena/VASP and alphaII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy JF - Cell Communication and Signaling N2 - Background: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. KW - Mena/VASP KW - dilated cardiomyopathy KW - actin KW - heart KW - spectrin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128760 VL - 11 IS - 56 ER - TY - JOUR A1 - Korb, Doreen A1 - Tng, Priscilla Y. A1 - Milenkovic, Vladimir M. A1 - Reichhart, Nadine A1 - Strauss, Olaf A1 - Ritter, Oliver A1 - Fischer, Tobias A1 - Benz, Peter M. A1 - Schuh, Kai T1 - Identification of PDZ domain containing proteins interacting with \(Ca_v1.2\) and PMCA4b JF - ISRN Cell Biology N2 - PDZ (PSD-95/Disc large/Zonula occludens-1) protein interaction domains bind to cytoplasmic protein C-termini of transmembrane proteins. In order to identify new interaction partners of the voltage-gated L-type \(Ca^{2+}\) channel Cav1.2 and the plasma membrane \(Ca^{2+}\) ATPase 4b (PMCA4b), we used PDZ domain arrays probing for 124 PDZ domains. We confirmed this byGST pulldowns and immunoprecipitations. In PDZ arrays, strongest interactionswith \(Ca_v1.2\) and PMCA4b were found for the PDZ domains of SAP-102, MAST-205, MAGI-1, MAGI-2, MAGI-3, and ZO-1. We observed binding of the \(Ca_v1.2\) C-terminus to PDZ domains of NHERF1/2, Mint-2, and CASK. PMCA4b was observed to interact with Mint-2 and its known interactions with Chapsyn-110 and CASK were confirmed. Furthermore, we validated interaction of \(Ca_v1.2\) and PMCA4b with NHERF1/2, CASK,MAST-205 and MAGI-3 viaimmunoprecipitation. We also verified the interaction of \(Ca_v1.2\) and nNOS and hypothesized that nNOS overexpression might reduce \(Ca^{2+}\) influx through \(Ca_v1.2\). To address this, we measured \(Ca^{2+}\) currents in HEK 293 cells co-expressing \(Ca_v1.2\) and nNOS and observed reduced voltage-dependent \(Ca_v1.2\) activation. Taken together, we conclude that \(Ca_v1.2\) and PMCA4b bind promiscuously to various PDZ domains, and that our data provides the basis for further investigation of the physiological consequences of these interactions. KW - Cell Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130585 IS - Article ID 265182 ER -