TY - JOUR A1 - Pozzi, Nicoló G. A1 - Palmisano, Chiara A1 - Reich, Martin M. A1 - Capetian, Philip A1 - Pacchetti, Claudio A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Troubleshooting gait disturbances in Parkinson’s disease with deep brain stimulation JF - Frontiers in Human Neuroscience N2 - Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson’s disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management. KW - Parkinson’s disease KW - freezing of gait (FOG) KW - deep brain stimulation (DBS) KW - subthalamic nucleus (STN) KW - globus pallidus pars interna (GPi) KW - pedunculopontine nucleus (PPN) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274007 SN - 1662-5161 VL - 16 ER - TY - JOUR A1 - Krajka, Victor A1 - Naujock, Maximilian A1 - Pauly, Martje G. A1 - Stengel, Felix A1 - Meier, Britta A1 - Stanslowsky, Nancy A1 - Klein, Christine A1 - Seibler, Philip A1 - Wegner, Florian A1 - Capetian, Philipp T1 - Ventral Telencephalic Patterning Protocols for Induced Pluripotent Stem Cells JF - Frontiers in Cell and Developmental Biology N2 - The differentiation of human induced pluripotent stem cells (hiPSCs) into specific cell types for disease modeling and restorative therapies is a key research agenda and offers the possibility to obtain patient-specific cells of interest for a wide range of diseases. Basal forebrain cholinergic neurons (BFCNs) play a particular role in the pathophysiology of Alzheimer’s dementia and isolated dystonias. In this work, various directed differentiation protocols based on monolayer neural induction were tested for their effectiveness in promoting a ventral telencephalic phenotype and generating BFCN. Ventralizing factors [i.e., purmorphamine and Sonic hedgehog (SHH)] were applied at different time points, time intervals, and concentrations. In addition, caudal identity was prevented by the use of a small molecule XAV-939 that inhibits the Wnt-pathway. After patterning, gene expression profiles were analyzed by quantitative PCR (qPCR). Rostro-ventral patterning is most effective when initiated simultaneously with neural induction. The most promising combination of patterning factors was 0.5 μM of purmorphamine and 1 μM of XAV-939, which induces the highest expression of transcription factors specific for the medial ganglionic eminence, the source of GABAergic inter- and cholinergic neurons in the telencephalon. Upon maturation of cells, the immune phenotype, as well as electrophysiological properties were investigated showing the presence of marker proteins specific for BFCN (choline acetyltransferase, ISL1, p75, and NKX2.1) and GABAergic neurons. Moreover, a considerable fraction of measured cells displayed mature electrophysiological properties. Synaptic boutons containing the vesicular acetylcholine transporter (VACHT) could be observed in the vicinity of the cells. This work will help to generate basal forebrain interneurons from hiPSCs, providing a promising platform for modeling neurological diseases, such as Alzheimer’s disease or Dystonia. KW - induced pluripotent stem cells KW - medial ganglionic eminence KW - Sonic hedgehog KW - XAV-939 KW - purmorphamine KW - basal forebrain cholinergic neurons KW - GABAergic neurons KW - electrophysiology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244607 SN - 2296-634X VL - 9 ER -