TY - JOUR A1 - Umstätter, Florian A1 - Werner, Julia A1 - Zerlin, Leah A1 - Mühlberg, Eric A1 - Kleist, Christian A1 - Klika, Karel D. A1 - Hertlein, Tobias A1 - Beijer, Barbro A1 - Domhan, Cornelius A1 - Zimmermann, Stefan A1 - Ohlsen, Knut A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Impact of linker modification and PEGylation of vancomycin conjugates on structure-activity relationships and pharmacokinetics JF - Pharmaceuticals N2 - As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity. KW - glycopeptide antibiotics KW - antimicrobial resistance KW - vancomycin KW - polycationic peptides KW - linker influence KW - pharmacokinetics KW - PEGylation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255197 SN - 1424-8247 VL - 15 IS - 2 ER - TY - JOUR A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Mühlberg, Eric A1 - Kleist, Christian A1 - Zimmermann, Stefan A1 - Beijer, Barbro A1 - Klika, Karel D. A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides JF - Angewandte Chemie International Edition N2 - Multidrug‐resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site‐specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000‐fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d‐Ala‐d‐Ala revealed a mode of action beyond inhibition of cell‐wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics. KW - antibiotics KW - bacterial resistance KW - glycopeptide antibiotics KW - peptide conjugates KW - vancomycin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215550 VL - 59 IS - 23 SP - 8823 EP - 8827 ER -