TY - THES A1 - El Merahbi, Rabih T1 - Adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation T1 - Der adrenerge induzierte ERK3-Signalweg verstärkt Lipolyse und unterdrückt Energiedissipation N2 - Obesity-induced diabetes affects over 400 million people worldwide. Obesity is a complex metabolic disease and is associated with several co-morbidities, all of which negatively affect the individual’s quality of life. It is commonly considered that obesity is a result of a positive energy misbalance, as increased food intake and lower expenditure eventually lead to the development of this disease. Moreover, the pathology of obesity is attributed to several genetic and epigenetic factors that put an individual at high risk compared to another. Adipose tissue is the main site of the organism’s energy storage. During the time when the nutrients are available in excess, adipocytes acquire triglycerides, which are released during the time of food deprivation in the process of lipolysis (free fatty acids and glycerol released from adipocytes). Uncontrolled lipolysis is the consequent event that contributes to the development of diabetes and paradoxically obesity. To identify the genetic factors aiming for future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the Extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrate that β-adrenergic stimulation stabilizes ERK3 leading to the formation of a complex with the co-factor MAP kinase-activated protein kinase 5 (MK5) thereby driving lipolysis. Mechanistically, we identify a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Moreover, we shed the light on our pharmacological approach in targeting ERK3/MK5 pathways using MK5 specific inhibitor. Already after 1 week of administering the inhibitor, mice showed signs of improvement of their metabolic fitness as showed here by a reduction in induced lipolysis and the elevation in the expression of thermogenic genes. Taken together, our data suggest that targeting the ERK3/MK5 pathway, a previously unrecognized signaling axis in adipose tissue, could be an attractive target for future therapies aiming to combat obesity-induced diabetes. N2 - Adipositas-induzierter Diabetes betrifft weltweit über 400 Millionen Menschen. Adipositas ist eine komplexe Stoffwechselerkrankung und geht mit mehreren Komorbiditäten einher, die sich alle negativ auf die Lebensqualität der Betroffenen auswirken. Es wird generell angenommen, dass Adipositas aus einem positiven Energieungleichgewicht resultiert, da eine erhöhte Nahrungsaufnahme und ein geringerer Verbrauch zu der Ausbildung dieser Krankheit führen. Darüber hinaus ist die Pathologie von Adipositas auf mehrere genetische und epigenetische Faktoren zurückzuführen, wodurch Individuen einem erhöhtem Risiko ausgesetzt sein können. Das Fettgewebe ist der vorwiegende Energiespeicher des Organismus. In Zeiten eines Nährstoffüberschusses speichern Adipozyten Triglyceride, die im Falle eines Nahrungsmangels durch den Prozess der Lipolyse in Form von freien Fettsäuren und Glycerin freigesetzt werden. Unkontrollierte Lipolyse ist ein Folgeereignis, welches zur Entwicklung von Diabetes und paradoxerweise zu Adipositas beiträgt. Um die genetischen Faktoren zu identifizieren, die in Zukunft therapeutische Angriffspunkte darstellen könnten, haben wir ein Hochdurchsatz-Screening durchgeführt und die extrazellulär regulierte Kinase 3 (ERK3) als Treffer identifiziert. Wir zeigen, dass β-adrenerge Stimulation ERK3 stabilisiert, was zur Bildung eines Komplexes mit dem Cofactor MAP-Kinase-aktivierte Proteinkinase 5 (MK5) führt und dadurch die Lipolyse vorantreibt. Mechanistisch identifizieren wir den Transkriptionsfaktor FOXO1, der dem ERK3/MK5-Signalweg nachgeschaltet ist und die Expression des wichtigsten lipolytischen Enzyms ATGL fördert. Darüber hinaus belegen wir, dass die gezielte Deletion von ERK3 in Maus-Adipozyten die Lipolyse hemmt, aber die Energiedissipation erhöht, den mageren Phänotyp fördert und Diabetes lindert. Außerdem nutzen wir einen pharmakologischen Ansatz durch Verwendung eines MK5 spezifischen Inhibitors, um auf den ERK3/MK5-Signalweg abzuzielen. Bereits eine Woche nach Verabreichung des Inhibitors zeigen Mäuse Anzeichen einer verbesserten metabolischen Fitness, die sich durch einer Verringerung der induzierten Lipolyse und eine verstärkte Expression von thermogenen Genen auszeichnet. Zusammenfassend legen unsere Daten nahe, dass der ERK3/MK5-Signalweg, eine zuvor nicht erkannte Signalachse im Fettgewebe, ein attraktiver Ansatzpunkt für zukünftige Therapien zur Bekämpfung von Adipositas-induziertem Diabetes sein könnte. KW - Metabolism KW - Lipolysis KW - Obesity KW - Adrenalin KW - ATGL KW - Foxo1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217510 ER -