TY - JOUR A1 - Bartl, Jasmin A1 - Scholz, Claus-Jürgen A1 - Hinterberger, Margareta A1 - Jungwirth, Susanne A1 - Wichart, Ildiko A1 - Rainer, Michael K. A1 - Kneitz, Susanne A1 - Danielczyk, Walter A1 - Tragl, Karl H. A1 - Fischer, Peter A1 - Riederer, Peter A1 - Grünblatt, Edna T1 - Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene JF - BMC Medical Genetics N2 - Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. KW - Insulin Degrading Enzyme Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137744 VL - 12 IS - 151 ER - TY - JOUR A1 - Deeken, Rosalia A1 - Gohlke, Jochen A1 - Scholz, Claus-Juergen A1 - Kneitz, Susanne A1 - Weber, Dana A1 - Fuchs, Joerg A1 - Hedrich, Rainer T1 - DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors JF - PLoS Genetics N2 - Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors. KW - DNA methylation KW - DNA transcription KW - gene expression KW - oncogenes KW - plant genomics KW - sequence motif analysis KW - arabidopsis thaliana KW - agrobacterium tumefaciens Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96318 ER - TY - JOUR A1 - Varagnolo, Linda A1 - Lin, Quiong A1 - Obier, Nadine A1 - Plass, Christoph A1 - Dietl, Johannes A1 - Zenke, Martin A1 - Claus, Rainer A1 - Müller, Albrecht M. T1 - PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells JF - Scientific Reports N2 - Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different HK4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs. KW - ex vivo expansion KW - epigenomic landscapes KW - in vivo polycomb KW - transplantation states genes KW - EZH2 differentiation trichostatin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148374 VL - 5 IS - 12319 ER - TY - JOUR A1 - Boch, Tobias A1 - Spiess, Birgit A1 - Heinz, Werner A1 - Cornely, Oliver A. A1 - Schwerdtfeger, Rainer A1 - Hahn, Joachim A1 - Krause, Stefan W. A1 - Duerken, Matthias A1 - Bertz, Hartmut A1 - Reuter, Stefan A1 - Kiehl, Michael A1 - Claus, Bernd A1 - Deckert, Peter Markus A1 - Hofmann, Wolf‐Karsten A1 - Buchheidt, Dieter A1 - Reinwald, Mark T1 - Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis JF - Mycoses N2 - Invasive aspergillosis (IA) is a severe complication in immunocompromised patients. Early diagnosis is crucial to decrease its high mortality, yet the diagnostic gold standard (histopathology and culture) is time‐consuming and cannot offer early confirmation of IA. Detection of IA by polymerase chain reaction (PCR) shows promising potential. Various studies have analysed its diagnostic performance in different clinical settings, especially addressing optimal specimen selection. However, direct comparison of different types of specimens in individual patients though essential, is rarely reported. We systematically assessed the diagnostic performance of an Aspergillus‐specific nested PCR by investigating specimens from the site of infection and comparing it with concurrent blood samples in individual patients (pts) with IA. In a retrospective multicenter analysis PCR was performed on clinical specimens (n = 138) of immunocompromised high‐risk pts (n = 133) from the site of infection together with concurrent blood samples. 38 pts were classified as proven/probable, 67 as possible and 28 as no IA according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions. A considerably superior performance of PCR from the site of infection was observed particularly in pts during antifungal prophylaxis (AFP)/antifungal therapy (AFT). Besides a specificity of 85%, sensitivity varied markedly in BAL (64%), CSF (100%), tissue samples (67%) as opposed to concurrent blood samples (8%). Our results further emphasise the need for investigating clinical samples from the site of infection in case of suspected IA to further establish or rule out the diagnosis. KW - antifungal KW - aspergillosis KW - BAL KW - blood KW - cerebrospinal fluid KW - comparison KW - PCR KW - Aspergillus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214065 VL - 62 IS - 11 SP - 1035 EP - 1042 ER - TY - JOUR A1 - Lüke, Florian A1 - Haller, Florian A1 - Utpatel, Kirsten A1 - Krebs, Markus A1 - Meidenbauer, Norbert A1 - Scheiter, Alexander A1 - Spoerl, Silvia A1 - Heudobler, Daniel A1 - Sparrer, Daniela A1 - Kaiser, Ulrich A1 - Keil, Felix A1 - Schubart, Christoph A1 - Tögel, Lars A1 - Einhell, Sabine A1 - Dietmaier, Wolfgang A1 - Huss, Ralf A1 - Dintner, Sebastian A1 - Sommer, Sebastian A1 - Jordan, Frank A1 - Goebeler, Maria-Elisabeth A1 - Metz, Michaela A1 - Haake, Diana A1 - Scheytt, Mithun A1 - Gerhard-Hartmann, Elena A1 - Maurus, Katja A1 - Brändlein, Stephanie A1 - Rosenwald, Andreas A1 - Hartmann, Arndt A1 - Märkl, Bruno A1 - Einsele, Hermann A1 - Mackensen, Andreas A1 - Herr, Wolfgang A1 - Kunzmann, Volker A1 - Bargou, Ralf A1 - Beckmann, Matthias W. A1 - Pukrop, Tobias A1 - Trepel, Martin A1 - Evert, Matthias A1 - Claus, Rainer A1 - Kerscher, Alexander T1 - Identification of disparities in personalized cancer care — a joint approach of the German WERA consortium JF - Cancers N2 - (1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy. KW - precision oncology KW - MTB KW - patient access KW - cancer care KW - outreach KW - real world data KW - outcomes research Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290311 SN - 2072-6694 VL - 14 IS - 20 ER -