TY - JOUR A1 - Krah, Franz-Sebastian A1 - Büntgen, Ulf A1 - Schaefer, Hanno A1 - Müller, Jörg A1 - Andrew, Carrie A1 - Boddy, Lynne A1 - Diez, Jeffrey A1 - Egli, Simon A1 - Freckleton, Robert A1 - Gange, Alan C. A1 - Halvorsen, Rune A1 - Heegaard, Einar A1 - Heideroth, Antje A1 - Heibl, Christoph A1 - Heilmann-Clausen, Jacob A1 - Høiland, Klaus A1 - Kar, Ritwika A1 - Kauserud, Håvard A1 - Kirk, Paul M. A1 - Kuyper, Thomas W. A1 - Krisai-Greilhuber, Irmgard A1 - Norden, Jenni A1 - Papastefanou, Phillip A1 - Senn-Irlet, Beatrice A1 - Bässler, Claus T1 - European mushroom assemblages are darker in cold climates JF - Nature Communications N2 - Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species’ geographical distributions will be critical in predicting ecosystem responses to global warming. KW - evolutionary ecology KW - fungal ecology KW - fungal evolution KW - macroecology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224815 VL - 10 ER -