TY - JOUR A1 - Pöppler, Ann-Christin A1 - Lübtow, Michael M. A1 - Schlauersbach, Jonas A1 - Wiest, Johannes A1 - Meinel, Lorenz A1 - Luxenhofer, Robert T1 - Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy JF - Angewandte Chemie International Edition N2 - Detailed insight into the internal structure of drug‐loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2‐oxazolines) and poly(2‐oxazines) results in poorer dissolution properties. Using solid‐state NMR spectroscopy and complementary tools we propose a loading‐dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross‐peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh‐loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems. KW - dissolution rates KW - micelles KW - polymers KW - short-range order KW - solid-state NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206705 VL - 58 IS - 51 ER - TY - JOUR A1 - Zahoranová, Anna A1 - Luxenhofer, Robert T1 - Poly(2‐oxazoline)‐ and Poly(2‐oxazine)‐Based Self‐Assemblies, Polyplexes, and Drug Nanoformulations—An Update JF - Advanced Healthcare Materials N2 - For many decades, poly(2‐oxazoline)s and poly(2‐oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world‐wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2‐oxazoline)‐based drug conjugate. The huge chemical and structural toolbox poly(2‐oxazoline)s and poly(2‐oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self‐assemblies and non‐covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2‐oxazoline)s and poly(2‐oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2‐oxazoline)s and poly(2‐oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2‐oxazoline)s and poly(2‐oxazine)s is learned. KW - block copolymers KW - colloids KW - cytotoxicity KW - drug delivery KW - micelles KW - microphase separation KW - thermogelling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225833 VL - 10 IS - 6 ER -