TY - JOUR A1 - Ranger, Christopher M. A1 - Biedermann, Peter HW A1 - Phuntumart, Vipaporn A1 - Beligala, Gayathri U. A1 - Ghosh, Satyaki A1 - Palmquist, Debra E. A1 - Mueller, Robert A1 - Barnett, Jenny A1 - Schultz, Peter B. A1 - Reding, Michael E. A1 - Benz, J. Philipp T1 - Symbiont selection via alcohol benefits fungus farming by ambrosia beetles JF - Proceedings of the National Academy of Sciences N2 - Animal-microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses. KW - fungus-farming insects KW - plant-insect-microbe interactions KW - symbiosis KW - insect-fungus mutualism KW - host screening Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224953 VL - 115 IS - 17 ER - TY - JOUR A1 - Albrecht, Franziska A1 - Mueller, Karsten A1 - Ballarini, Tommaso A1 - Lampe, Leonie A1 - Diehl-Schmid, Janine A1 - Fassbender, Klaus A1 - Fliessbach, Klaus A1 - Jahn, Holger A1 - Jech, Robert A1 - Kassubek, Jan A1 - Kornhuber, Johannes A1 - Landwehrmeyer, Bernhard A1 - Lauer, Martin A1 - Ludolph, Albert C. A1 - Lyros, Epameinondas A1 - Prudlo, Johannes A1 - Schneider, Anja A1 - Synofzik, Matthis A1 - Wiltfang, Jens A1 - Danek, Adrian A1 - Otto, Markus A1 - Schroeter, Matthias L. T1 - Unraveling corticobasal syndrome and alien limb syndrome with structural brain imaging JF - Cortex N2 - Alien limb phenomenon is a rare syndrome associated with a feeling of non-belonging and disowning toward one's limb. In contrast, anarchic limb phenomenon leads to involuntary but goal-directed movements. Alien/anarchic limb phenomena are frequent in corticobasal syndrome (CBS), an atypical parkinsonian syndrome characterized by rigidity, akinesia, dystonia, cortical sensory deficit, and apraxia. The structure function relationship of alien/anarchic limb was investigated in multi centric structural magnetic resonance imaging (MRI) data. Whole-group and single subject comparisons were made in 25 CBS and eight CBS-alien/anarchic limb patients versus controls. Support vector machine was used to see if CBS with and without alien/anarchic limb could be distinguished by structural MRI patterns. Whole-group comparison of CBS versus controls revealed asymmetric frontotemporal atrophy. CBS with alien/anarchic limb syndrome versus controls showed frontoparietal atrophy including the supplementary motor area contralateral to the side of the affected limb. Exploratory analysis identified frontotemporal regions encompassing the pre-/and postcentral gyrus as compromised in CBS with alien limb syndrome. Classification of CBS patients yielded accuracies of 79%. CBS-alien/anarchic limb syndrome was differentiated from CBS patients with an accuracy of 81%. Predictive differences were found in the cingulate gyrus spreading to frontomedian cortex, postcentral gyrus, and temporoparietoocipital regions. We present the first MRI-based group analysis on CBS-alien/anarchic limb. Results pave the way for individual clinical syndrome prediction and allow understanding the underlying neurocognitive architecture. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). KW - Alien limb syndrome KW - Anarchic limb syndrome KW - Corticobasal syndrome KW - Diagnosis prediction KW - Support vector machine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221040 VL - 117 ER -