TY - JOUR A1 - Förtsch, Christina A1 - Hupp, Sabrina A1 - Ma, Jiangtao A1 - Mitchell, Timothy J. A1 - Maier, Elke A1 - Benz, Roland A1 - Iliev, Asparouh I. T1 - Changes in Astrocyte Shape Induced by Sublytic Concentrations of the Cholesterol-Dependent Cytolysin Pneumolysin Still Require Pore-Forming Capacity N2 - Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20–40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested. KW - Toxikologie KW - pneumolysin KW - pore formation KW - cytoskeleton Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69084 ER - TY - JOUR A1 - Kronhardt, Angelika A1 - Beitzinger, Christoph A1 - Barth, Holger A1 - Benz, Roland T1 - Chloroquine Analog Interaction with C2-and Iota-Toxin in Vitro and in Living Cells JF - Toxins N2 - C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa. KW - C2-toxin KW - iota-toxin KW - binding components KW - chloroquine KW - black lipid bilayer KW - aminoquinolinium salts Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168286 VL - 8 IS - 8 ER - TY - JOUR A1 - Abdali, Narges A1 - Barth, Enrico A1 - Norouzy, Amir A1 - Schulz, Robert A1 - Nau, Werner M. A1 - Kleinekathofer, Ulrich A1 - Tauch, Andreas A1 - Benz, Roland T1 - Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion- Selective Cell Wall Channel JF - PLoS ONE N2 - Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed. KW - antibiotics KW - detergents KW - anions KW - corynebacterium diphtheriae KW - membrane potential KW - corynebacteria KW - cell walls KW - permeability Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129989 VL - 8 IS - 10 ER - TY - JOUR A1 - Beitzinger, Christoph A1 - Bronnhuber, Annika A1 - Duscha, Kerstin A1 - Riedl, Zsuzsanna A1 - Huber-Lang, Markus A1 - Benz, Roland A1 - Hajos, György A1 - Barth, Holger T1 - Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin JF - PLoS ONE N2 - Background Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric \(PA_{63}\) binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the \(PA_{63}\)-channel in a dose dependent way. Methodology/Principal Findings Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the \(PA_{63}\)-channel in the µM range, when both, inhibitor and \(PA_{63}\) are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of \(PA_{63}\)-channel function also efficiently block intoxication of the cells by the combination lethal factor and \(PA_{63}\) in the same concentration range as they block the channels in vitro. Conclusions/Significance These results strongly argue in favor of a transport of lethal factor through the \(PA_{63}\)-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. KW - intoxication KW - chloroquine KW - toxins KW - anthrax KW - cell membranes KW - lipid bilayer KW - macrophages KW - membrane potential Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130097 VL - 8 IS - 6 ER - TY - JOUR A1 - Thein, Marcus A1 - Bonde, Mari A1 - Bunikis, Ignas A1 - Denker, Katrin A1 - Sickmann, Albert A1 - Bergström, Sven A1 - Benz, Roland T1 - DipA, a Pore-Forming Protein in the Outer Membrane of Lyme Disease Spirochetes Exhibits Specificity for the Permeation of Dicarboxylates N2 - Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a singlechannel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl) were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75809 ER - TY - JOUR A1 - Wippel, Carolin A1 - Förtsch, Christina A1 - Hupp, Sabrina A1 - Maier, Elke A1 - Benz, Roland A1 - Ma, Jiangtao A1 - Mitchell, Timothy J A1 - Iliev, Asparouh I T1 - Extracellular Calcium Reduction Strongly Increases the Lytic Capacity of Pneumolysin From Streptococcus Pneumoniae in Brain Tissue JF - The Journal of Infectious Diseases N2 - Background Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods  Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results  The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions  Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis. " KW - bacteria Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139356 VL - 204 IS - 6 ER - TY - JOUR A1 - Piselli, Claudio A1 - Benz, Roland T1 - Fosmidomycin transport through the phosphate‐specific porins OprO and OprP of Pseudomonas aeruginosa JF - Molecular Microbiology N2 - The Gram‐negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital‐acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine‐tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate‐specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono‐ and polyphosphate‐specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate‐specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single‐channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid‐containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system. KW - fosmidomycin KW - lipid bilayer membrane KW - OprO KW - OprP KW - porin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238905 VL - 116 IS - 1 SP - 97 EP - 108 ER - TY - JOUR A1 - Aistleitner, Karin A1 - Heinz, Christian A1 - Hoermann, Alexandra A1 - Heinz, Eva A1 - Montanaro, Jacqueline A1 - Schulz, Frederik A1 - Maier, Elke A1 - Pichler, Peter A1 - Benz, Roland A1 - Horn, Matthias T1 - Identification and Characterization of a Novel Porin Family Highlights a Major Difference in the Outer Membrane of Chlamydial Symbionts and Pathogens JF - PLoS ONE N2 - The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydia outer membrane proteins, PomS (pc1489) and PomT (pc1077), are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts. KW - cell wall KW - protochlamydia amoebophila KW - escherichia coli KW - matrix protein porin KW - gram negative bacteria KW - single channel analysis KW - developmental cycle KW - mycobacterium smegmatis KW - monoclonal antibodies KW - signal peptides Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131176 VL - 8 IS - 1 ER - TY - JOUR A1 - Abdali, Narges A1 - Younas, Farhan A1 - Mafakheri, Samaneh A1 - Pothula, Karunakar R. A1 - Kleinekathöfer, Ulrich A1 - Tauch, Andreas A1 - Benz, Roland T1 - Identification and characterization of smallest pore-forming protein in the cell wall of pathogenic Corynebacterium urealyticum DSM 7109 JF - BMC Biochemistry N2 - Background: Corynebacterium urealyticum, a pathogenic, multidrug resistant member of the mycolata, is known as causative agent of urinary tract infections although it is a bacterium of the skin flora. This pathogenic bacterium shares with the mycolata the property of having an unusual cell envelope composition and architecture, typical for the genus Corynebacterium. The cell wall of members of the mycolata contains channel-forming proteins for the uptake of solutes. Results: In this study, we provide novel information on the identification and characterization of a pore-forming protein in the cell wall of C. urealyticum DSM 7109. Detergent extracts of whole C. urealyticum cultures formed in lipid bilayer membranes slightly cation-selective pores with a single-channel conductance of 1.75 nS in 1 M KCl. Experiments with different salts and non-electrolytes suggested that the cell wall pore of C. urealyticum is wide and water-filled and has a diameter of about 1.8 nm. Molecular modelling and dynamics has been performed to obtain a model of the pore. For the search of the gene coding for the cell wall pore of C. urealyticum we looked in the known genome of C. urealyticum for a similar chromosomal localization of the porin gene to known porH and porA genes of other Corynebacterium strains. Three genes are located between the genes coding for GroEL2 and polyphosphate kinase (PKK2). Two of the genes (cur_1714 and cur_1715) were expressed in different constructs in C. glutamicum Delta porA Delta porH and in porin-deficient BL21 DE3 Omp8 E. coli strains. The results suggested that the gene cur_1714 codes alone for the cell wall channel. The cell wall porin of C. urealyticum termed PorACur was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 4 kDa on tricine-containing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Conclusions: Biophysical characterization of the purified protein (PorACur) suggested indeed that cur_1714 is the gene coding for the pore-forming protein in C. urealyticum because the protein formed in lipid bilayer experiments the same pores as the detergent extract of whole cells. The study is the first report of a cell wall channel in the pathogenic C. urealyticum. KW - cell wall channel KW - mycolic acid KW - porin KW - Corynebacterium urealyticum KW - lipid bilayer membrane Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226959 VL - 19 ER - TY - JOUR A1 - Knapp, Oliver A1 - Benz, Roland T1 - Membrane activity and channel formation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis in lipid bilayer membranes JF - Toxins N2 - The Gram-negative bacterium Bordetella pertussis is the cause of whooping cough. One of its pathogenicity factors is the adenylate cyclase toxin (CyaA) secreted by a Type I export system. The 1706 amino acid long CyaA (177 kDa) belongs to the continuously increasing family of repeat in toxin (RTX) toxins because it contains in its C-terminal half a high number of nine-residue tandem repeats. The protein exhibits cytotoxic and hemolytic activities that target primarily myeloid phagocytic cells expressing the αMβ2 integrin receptor (CD11b/CD18). CyaA represents an exception among RTX cytolysins because the first 400 amino acids from its N-terminal end possess a calmodulin-activated adenylate cyclase (AC) activity. The entry of the AC into target cells is not dependent on the receptor-mediated endocytosis pathway and penetrates directly across the cytoplasmic membrane of a variety of epithelial and immune effector cells. The hemolytic activity of CyaA is rather low, which may have to do with its rather low induced permeability change of target cells and its low conductance in lipid bilayer membranes. CyaA forms highly cation-selective channels in lipid bilayers that show a strong dependence on aqueous pH. The pore-forming activity of CyaA but not its single channel conductance is highly dependent on Ca\(^{2+}\) concentration with a half saturation constant of about 2 to 4 mM. KW - pore formation KW - adenylate cyclase toxin KW - CyaA KW - Bordetella pertussis KW - membrane interaction KW - lipid bilayer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203362 SN - 2072-6651 VL - 12 IS - 3 ER -