TY - JOUR A1 - Peindl, Matthias A1 - Göttlich, Claudia A1 - Crouch, Samantha A1 - Hoff, Niklas A1 - Lüttgens, Tamara A1 - Schmitt, Franziska A1 - Pereira, Jesús Guillermo Nieves A1 - May, Celina A1 - Schliermann, Anna A1 - Kronenthaler, Corinna A1 - Cheufou, Danjouma A1 - Reu-Hofer, Simone A1 - Rosenwald, Andreas A1 - Weigl, Elena A1 - Walles, Thorsten A1 - Schüler, Julia A1 - Dandekar, Thomas A1 - Nietzer, Sarah A1 - Dandekar, Gudrun T1 - EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures JF - Cancers N2 - Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures. KW - EMT KW - drug resistance KW - invasion KW - stemness KW - 3D lung tumor tissue models KW - KRAS biomarker signatures KW - boolean in silico models KW - targeted combination therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270744 SN - 2072-6694 VL - 14 IS - 9 ER - TY - JOUR A1 - Pattschull, Grit A1 - Walz, Susanne A1 - Gründl, Marco A1 - Schwab, Melissa A1 - Rühl, Eva A1 - Baluapuri, Apoorva A1 - Cindric-Vranesic, Anita A1 - Kneitz, Susanne A1 - Wolf, Elmar A1 - Ade, Carsten P. A1 - Rosenwald, Andreas A1 - von Eyss, Björn A1 - Gaubatz, Stefan T1 - The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes JF - Cell Reports N2 - YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways. KW - YAP KW - B-MYB KW - Myb-MuvB KW - mitotic genes KW - enhancer KW - transcription Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202039 VL - 27 IS - 12 ER - TY - JOUR A1 - Meir, Michael A1 - Maurus, Katja A1 - Kuper, Jochen A1 - Hankir, Mohammed A1 - Wardelmann, Eva A1 - Rosenwald, Andreas A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - The novel KIT exon 11 germline mutation K558N is associated with gastrointestinal stromal tumor, mastocytosis, and seminoma development JF - Genes, Chromosomes & Cancer N2 - Familial gastrointestinal stromal tumors (GIST) are dominant genetic disorders that are caused by germline mutations of the type III receptor tyrosine kinase KIT. While sporadic mutations are frequently found in mastocytosis and GISTs, germline mutations of KIT have only been described in 39 families until now. We detected a novel germline mutation of KIT in exon 11 (p.Lys-558-Asn; K558N) in a patient from a kindred with several GISTs harboring different secondary somatic KIT mutations. Structural analysis suggests that the primary germline mutation alone is not sufficient to release the autoinhibitory region of KIT located in the transmembrane domain. Instead, the KIT kinase module becomes constitutively activated when K558N combines with different secondary somatic mutations. The identical germline mutation in combination with an additional somatic KIT mutation was detected in a second patient of the kindred with seminoma while a third patient within the family had a cutaneous mastocytosis. These findings suggest that the K558N mutation interferes with the juxtamembranous part of KIT, since seminoma and mastocystosis are usually not associated with exon 11 mutations. KW - germline mutation KW - GIST KW - KIT KW - mastocytosis KW - seminoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257476 VL - 60 IS - 12 ER - TY - JOUR A1 - Wobser, Marion A1 - Schummer, Patrick A1 - Appenzeller, Silke A1 - Kneitz, Hermann A1 - Roth, Sabine A1 - Goebeler, Matthias A1 - Geissinger, Eva A1 - Rosenwald, Andreas A1 - Maurus, Katja T1 - Panel sequencing of primary cutaneous B-cell lymphoma JF - Cancers N2 - Background: Primary cutaneous follicular B-cell lymphoma (PCFBCL) represents an indolent subtype of Non-Hodgkin’s lymphomas, being clinically characterized by slowly growing tumors of the skin and common cutaneous relapses, while only exhibiting a low propensity for systemic dissemination or fatal outcome. Up to now, only few studies have investigated underlying molecular alterations of PCFBCL with respect to somatic mutations. Objectives: Our aim was to gain deeper insight into the pathogenesis of PCFBCL and to delineate discriminatory molecular features of this lymphoma subtype. Methods: We performed hybridization-based panel sequencing of 40 lymphoma-associated genes of 10 cases of well-characterized PCFBCL. In addition, we included two further ambiguous cases of atypical B-cell-rich lymphoid infiltrate/B-cell lymphoma of the skin for which definite subtype attribution had not been possible by routine investigations. Results: In 10 out of 12 analyzed cases, we identified genetic alterations within 15 of the selected 40 target genes. The most frequently detected alterations in PCFBCL affected the TNFRSF14, CREBBP, STAT6 and TP53 genes. Our analysis unrevealed novel mutations of the BCL2 gene in PCFBCL. All patients exhibited an indolent clinical course. Both the included arbitrary cases of atypical B-cell-rich cutaneous infiltrates showed somatic mutations within the FAS gene. As these mutations have previously been designated as subtype-specific recurrent alterations in primary cutaneous marginal zone lymphoma (PCMZL), we finally favored the diagnosis of PCMZL in these two cases based on these molecular findings. Conclusions: To conclude, our molecular data support that PCFBCL shows distinct somatic mutations which may aid to differentiate PCFBCL from pseudo-lymphoma as well as from other indolent and aggressive cutaneous B-cell lymphomas. While the detected genetic alterations of PCFBCL did not turn out to harbor any prognostic value in our cohort, our molecular data may add adjunctive discriminatory features for diagnostic purposes on a molecular level. KW - B-cell lymphoma KW - primary cutaneous follicular B-cell lymphoma KW - targeted sequencing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290330 SN - 2072-6694 VL - 14 IS - 21 ER - TY - JOUR A1 - Hrudka, Jan A1 - Eis, Václav A1 - Heřman, Josef A1 - Prouzová, Zuzana A1 - Rosenwald, Andreas A1 - František, Duška T1 - Panniculitis-like T-cell-lymphoma in the mesentery associated with hemophagocytic syndrome: autopsy case report JF - Diagnostic Pathology N2 - Background Panniculitis-like T-cell lymphoma is an uncommon type of non-Hodgkin lymphoma, occurring usually in the form of nodules within the subcutaneous fat tissue of the extremities or trunk. In the literature, subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is described as a distinct type of T-cell lymphoma with a variable clinical behavior, depending on molecular phenotype of T-cell receptor (TCR) and on the presence or absence of hemophagocytic syndrome. Case presentation We present a bioptic and autoptic case of a 65-years old Caucasian man with panniculitic T-cell lymphoma with morphological and immunohistochemical features of SPTCL, limited to the retroperitoneal and mesenteric mass, i.e. without any cutaneous involvement, and associated with severe hemophagocytic lymphohistiocytosis. Conclusion A panniculitic T-cell lymphoma with morphological and molecular features of SPTCL, which is limited to mesentery, i.e. does not involve subcutaneous fat, seems to be exceedingly rare. KW - panniculitis KW - T-cell lymphoma KW - mesentery KW - hemophagocytosis KW - lymphohistiocytosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322665 VL - 14 ER - TY - JOUR A1 - Zamò, Alberto A1 - Gerhard-Hartmann, Elena A1 - Ott, German A1 - Anagnostopoulos, Ioannis A1 - Scott, David W. A1 - Rosenwald, Andreas A1 - Rauert-Wunderlich, Hilka T1 - Routine application of the Lymph2Cx assay for the subclassification of aggressive B-cell lymphoma: report of a prospective real-world series JF - Virchows Archiv N2 - The subclassification of diffuse large B-cell lymphoma (DLBCL) into germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes has become mandatory in the 2017 update of the WHO classification of lymphoid neoplasms and will continue to be used in the WHO 5\(^{th}\) edition. The RNA-based Lymph2Cx assay has been validated as a reliable surrogate of high-throughput gene expression profiling assays for distinguishing between GCB and ABC DLBCL and provides reliable results from formalin-fixed, paraffin-embedded (FFPE) material. This test has been previously used in clinical trials, but experience from real-world routine application is rare. We routinely applied the Lymph2Cx assay to day-to-day diagnostics on a series of 147 aggressive B-cell lymphoma cases and correlated our results with the immunohistochemical subclassification using the Hans algorithm and fluorescence in situ hybridization findings using break-apart probes for MYC, BCL2, and BCL6. The routine use of the Lymph2Cx assay had a high technical success rate (94.6%) with a low rate of failure due to poor material and/or RNA quality. The Lymph2Cx assay was discordant with the Hans algorithm in 18% (23 of 128 cases). Discordant cases were mainly classified as GCB by the Hans algorithm and as ABC by Lymph2Cx (n = 11, 8.6%). Only 5 cases (3.9%) were classified as non-GCB by the Hans algorithm and as GCB by Lymph2Cx. Additionally, 5.5% of cases (n = 7) were left unclassified by Lymph2Cx, whereas they were defined as GCB (n = 4) or non-GCB (n = 3) by the Hans algorithm. Our data support the routine applicability of the Lymph2Cx assay. KW - diffuse large B-cell lymphoma KW - Hans algorithm KW - Lymph2Cx assay KW - cell of origin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324686 VL - 481 IS - 6 ER - TY - JOUR A1 - Nickl, Vera A1 - Eck, Juliana A1 - Goedert, Nicolas A1 - Hübner, Julian A1 - Nerreter, Thomas A1 - Hagemann, Carsten A1 - Ernestus, Ralf-Ingo A1 - Schulz, Tim A1 - Nickl, Robert Carl A1 - Keßler, Almuth Friederike A1 - Löhr, Mario A1 - Rosenwald, Andreas A1 - Breun, Maria A1 - Monoranu, Camelia Maria T1 - Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma JF - Cancers N2 - While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future. KW - glioblastoma KW - organoids KW - slice culture KW - tumormicroenvironment Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319249 SN - 2072-6694 VL - 15 IS - 10 ER - TY - JOUR A1 - Böck, Julia A1 - Maurus, Katja A1 - Gerhard-Hartmann, Elena A1 - Brändlein, Stephanie A1 - Kurz, Katrin S. A1 - Ott, German A1 - Anagnostopoulos, Ioannis A1 - Rosenwald, Andreas A1 - Zamò, Alberto T1 - Targeted panel sequencing in the routine diagnosis of mature T- and NK-cell lymphomas BT - report of 128 cases from two German reference centers JF - Frontiers in Oncology N2 - Diagnosing any of the more than 30 types of T-cell lymphomas is considered a challenging task for many pathologists and currently requires morphological expertise as well as the integration of clinical data, immunophenotype, flow cytometry and clonality analyses. Even considering all available information, some margin of doubt might remain using the current diagnostic procedures. In recent times, the genetic landscape of most T-cell lymphomas has been elucidated, showing a number of diagnostically relevant mutations. In addition, recent data indicate that some of these genetic alterations might bear prognostic and predictive value. Extensive genetic analyses, such as whole exome or large panel sequencing are still expensive and time consuming, therefore limiting their application in routine diagnostic. We therefore devoted our effort to develop a lean approach for genetic analysis of T-cell lymphomas, focusing on maximum efficiency rather than exhaustively covering all possible targets. Here we report the results generated with our small amplicon-based panel that could be used routinely on paraffin-embedded and even decalcified samples, on a single sample basis in parallel with other NGS-panels used in our routine diagnostic lab, in a relatively short time and with limited costs. We tested 128 available samples from two German reference centers as part of our routine work up (among which 116 T-cell lymphomas), which is the largest routine diagnostic series reported to date. Our results showed that this assay had a very high rate of technical success (97%) and could detect mutations in the majority (79%) of tested T-cell lymphoma samples. KW - T-cell lymphoma KW - panel-sequencing KW - NGS KW - diagnostics KW - mutation KW - FFPE Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-326478 SN - 2234-943X VL - 13 ER - TY - JOUR A1 - Murti, Krisna A1 - Fender, Hendrik A1 - Glatzle, Carolin A1 - Wismer, Rhoda A1 - Sampere-Birlanga, Salvador A1 - Wild, Vanessa A1 - Muhammad, Khalid A1 - Rosenwald, Andreas A1 - Serfling, Edgar A1 - Avots, Andris T1 - Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells JF - Frontiers in Oncology N2 - In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC – induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL. KW - apoptosis KW - Burkitt lymphoma KW - cyclosporin A KW - nuclear localization KW - NFATc1 KW - activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) KW - B cell receptor (BCR) KW - Burkitt lymphoma (BL) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323103 VL - 13 ER - TY - JOUR A1 - Seal, Rishav A1 - Schwab, Lara S. U. A1 - Chiarolla, Cristina M. A1 - Hundhausen, Nadine A1 - Klose, Georg Heinrich A1 - Reu-Hofer, Simone A1 - Rosenwald, Andreas A1 - Wiest, Johannes A1 - Berberich-Siebelt, Friederike T1 - Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis JF - Frontiers in Immunology N2 - In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water – intermittently with DSS induction – revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities. KW - anti-inflammatory cytokines KW - AOM/DSS KW - pro-inflammatory cytokines KW - effector Treg (eTreg) KW - chronic IBD model KW - JAK inhibitor KW - tofacitinib KW - treatment regimens Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317815 VL - 14 ER -