TY - JOUR A1 - Pfeiffer, Verena A1 - Götz, Rudolf A1 - Xiang, Chaomei A1 - Camarero, Guadelupe A1 - Braun, Attila A1 - Zhang, Yina A1 - Blum, Robert A1 - Heinsen, Helmut A1 - Nieswandt, Bernhard A1 - Rapp, Ulf R. T1 - Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum JF - PLoS ONE N2 - This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures. KW - granule cells KW - hippocampus KW - neurons KW - neuronal dendrites KW - embryos KW - dentate gyrus KW - neuronal differentiation KW - cerebellum Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130304 VL - 8 IS - 3 ER - TY - JOUR A1 - Stöckli, K. A. A1 - Lottspeich, F. A1 - Sendtner, Michael A1 - Masiakowski, P. A1 - Carroll, Patrick A1 - Götz, Rudolf A1 - Lindholm, D. A1 - Thoenen, Hans T1 - Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor N2 - CILIARY neurotrophic factor (CNTF) was originally characterized as a survival factor for chick ciliary neurons in vitro. More recently, it was shown to promote the survival of a variety of otherneuronal cell types and to affect the differentiation of E7 chick sympathetic neurons by inhibiting their proliferation and by inducing the expression of yasoactiYe intestinal peptide immunoreactiyity (VIP-IR). In cultures of dissociated sympathetic neurons from newborn rats, CNTF induces cholinergic differentiation as shown by increased levels of choline acetyltransferase (ChAT. Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34229 ER -