TY - JOUR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging JF - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - PET KW - PSMA-PET KW - Positron Emission Tomography KW - Prostate Cancer KW - Virchow Node Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164632 SN - 0090-4295 VL - 117 ER - TY - JOUR A1 - Eissler, Cristoph A1 - Werner, Rudolf A. A1 - Arias-Loza, Paula A1 - Nose, Naoko A1 - Chen, Xinyu A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters JF - Molecular Imaging N2 - Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 & PLUSMN; 57.7 mu l*, 380.8 & PLUSMN; 57.2 mu l*, 398.0 & PLUSMN; 63.1 mu l*, and 444.8 & PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used. KW - Myocardial-perfusion SPECT KW - left-ventricular function KW - ejection fraction KW - MRI Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265778 VL - 2021 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers JF - The International Journal of Cardiovascular Imaging N2 - The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed. KW - heart failure with mid-range ejection fraction KW - Positronenemissionstomografie KW - coronary artery disease KW - precision medicine KW - positron emission tomography KW - PET KW - SPECT KW - myocardial perfusion imaging KW - MPI KW - 18F-flurpiridaz KW - 18FFBnTP KW - HFmrEF Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169134 SN - 1569-5794 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Higuchi, Takahiro A1 - Javadi, Mehrbod S. A1 - Rowe, Steven P. A1 - Zsótér, Norbert A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Kreissl, Michael C. A1 - Lapa, Constantin T1 - Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib JF - Endocrine N2 - Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction. KW - personalized medicine KW - Positronen-Emissions-Tomografie KW - medullary thyroid carcinoma KW - tyrosine kinase inhibitor KW - TKI KW - vandetanib KW - 18F-FDG KW - positron emission tomography KW - 2-deoxy-2-(18F)fluoro-D-glucose KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167910 SN - 1355-008X ER - TY - JOUR A1 - Serfling, Sebastian E. A1 - Lapa, Constantin A1 - Dreher, Niklas A1 - Hartrampf, Philipp E. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Schirbel, Andreas A1 - Weich, Alexander A1 - Hahner, Stefanie A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Werner, Rudolf A. T1 - Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT JF - Molecular Imaging and Biology N2 - Background CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs. Methods Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA, defined as SUV\(_{mean}\) x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden. Results Median SUV\(_{mean}\) in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUV\(_{max}\) in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found. Conclusions In patients with solid tumors imaged with [\(^{68}\)Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged. KW - CXCR4 KW - C-X-C motif chemokine receptor 4 KW - PET KW - [68Ga]PentixaFor KW - [177Lu]/[90Y]PentixaTher KW - theranostics KW - endoradiotherapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324622 VL - 24 IS - 4 ER - TY - JOUR A1 - Weich, Alexander A1 - Higuchi, Takahiro A1 - Bundschuh, Ralph A. A1 - Lapa, Constantin A1 - Serfling, Sebastian E. A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Derlin, Thorsten A1 - Werner, Rudolf A. T1 - Training on reporting and data system (RADS) for somatostatin-receptor targeted molecular imaging can reduce the test anxiety of inexperienced readers JF - Molecular Imaging and Biology N2 - Purpose For somatostatin receptor (SSTR)-positron emission tomography/computed tomography (PET/CT), a standardized framework termed SSTR-reporting and data system (RADS) has been proposed. We aimed to elucidate the impact of a RADS-focused training on reader’s anxiety to report on SSTR-PET/CT, the motivational beliefs in learning such a system, whether it increases reader’s confidence, and its implementation in clinical routine. Procedures A 3-day training course focusing on SSTR-RADS was conducted. Self-report questionnaires were handed out prior to the course (Pre) and thereafter (Post). The impact of the training on the following categories was evaluated: (1) test anxiety to report on SSTR-PET/CT, (2) motivational beliefs, (3) increase in reader’s confidence, and (4) clinical implementation. To assess the effect size of the course, Cohen’s d was calculated (small, d = 0.20; large effect, d = 0.80). Results Of 22 participants, Pre and Post were returned by 21/22 (95.5%). In total, 14/21 (66.7%) were considered inexperienced (IR, < 1 year experience in reading SSTR-PET/CTs) and 7/21 (33.3%) as experienced readers (ER, > 1 year). Applying SSTR-RADS, a large decrease in anxiety to report on SSTR-PET/CT was noted for IR (d =  − 0.74, P = 0.02), but not for ER (d = 0.11, P = 0.78). For the other three categories motivational beliefs, reader’s confidence, and clinical implementation, agreement rates were already high prior to the training and persisted throughout the course (P ≥ 0.21). Conclusions A framework-focused reader training can reduce anxiety to report on SSTR-PET/CTs, in particular for inexperienced readers. This may allow for a more widespread adoption of this system, e.g., in multicenter trials for better intra- and interindividual comparison of scan results. KW - PET/CT KW - neuroendocrine tumor KW - PRRT KW - peptide receptor radionuclide therapy KW - reporting and data system KW - SSTR-RADS KW - RADS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324645 VL - 24 IS - 4 ER - TY - JOUR A1 - Hartrampf, Philipp E. A1 - Seitz, Anna Katharina A1 - Weinzierl, Franz-Xaver A1 - Serfling, Sebastian E. A1 - Schirbel, Andreas A1 - Rowe, Steven P. A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Werner, Rudolf A. T1 - Baseline clinical characteristics predict overall survival in patients undergoing radioligand therapy with [\(^{177}\)Lu]Lu-PSMA I&T during long-term follow-up JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Background Radioligand therapy (RLT) with \(^{177}\)Lu-labeled prostate-specific membrane antigen (PSMA) ligands is associated with prolonged overall survival (OS) in patients with advanced, metastatic castration-resistant prostate cancer (mCRPC). A substantial number of patients, however, are prone to treatment failure. We aimed to determine clinical baseline characteristics to predict OS in patients receiving [\(^{177}\)Lu]Lu-PSMA I&T RLT in a long-term follow-up. Materials and methods Ninety-two mCRPC patients treated with [\(^{177}\)Lu]Lu-PSMA I&T with a follow-up of at least 18 months were retrospectively identified. Multivariable Cox regression analyses were performed for various baseline characteristics, including laboratory values, Gleason score, age, prior therapies, and time interval between initial diagnosis and first treatment cycle (interval\(_{Diagnosis-RLT}\), per 12 months). Cutoff values for significant predictors were determined using receiver operating characteristic (ROC) analysis. ROC-derived thresholds were then applied to Kaplan–Meier analyses. Results Baseline C-reactive protein (CRP; hazard ratio [HR], 1.10, 95% CI 1.02–1.18; P = 0.01), lactate dehydrogenase (LDH; HR, 1.07, 95% CI 1.01–1.11; P = 0.01), aspartate aminotransferase (AST; HR, 1.16, 95% CI 1.06–1.26; P = 0.001), and interval\(_{Diagnosis-RLT}\) (HR, 0.95, 95% CI 0.91–0.99; P = 0.02) were identified as independent prognostic factors for OS. The following respective ROC-based thresholds were determined: CRP, 0.98 mg/dl (area under the curve [AUC], 0.80); LDH, 276.5 U/l (AUC, 0.83); AST, 26.95 U/l (AUC, 0.73); and interval\(_{Diagnosis-RLT}\), 43.5 months (AUC, 0.68; P < 0.01, respectively). Respective Kaplan–Meier analyses demonstrated a significantly longer median OS of patients with lower CRP, lower LDH, and lower AST, as well as prolonged interval\(_{Diagnosis-RLT}\) (P ≤ 0.01, respectively). Conclusion In mCRPC patients treated with [\(^{177}\)Lu]Lu-PSMA I&T, baseline CRP, LDH, AST, and time interval until RLT initiation (thereby reflecting a possible indicator for tumor aggressiveness) are independently associated with survival. Our findings are in line with previous findings on [\(^{177}\)Lu]Lu-PSMA-617, and we believe that these clinical baseline characteristics may support the nuclear medicine specialist to identify long-term survivors. KW - PSMA KW - prostate cancer KW - [177Lu]Lu-PSMA I&T KW - radioligand therapy KW - overall survival KW - prediction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324573 VL - 49 IS - 12 ER - TY - JOUR A1 - Higuchi, Takahiro A1 - Serfling, Sebastian E. A1 - Rowe, Steven P. A1 - Werner, Rudolf A. T1 - Therapeutic effects of lipid lowering medications on myocardial blood flow, inflammation, and sympathetic nerve activity using nuclear techniques JF - Current Cardiology Reports N2 - Purpose of Review Statins are routinely applied in patients with coronary artery disease, as they allow significantly to reduce blood cholesterol levels. Although those drugs are endorsed by current guidelines and prescribed routinely, a substantial portion of patients are still statin-intolerant and image-piloted strategies may then be helpful to identify patients that need further intensified treatment, e.g., to initiate treatment with proprotein convertase subtilisin / kexin type 9 inhibitors (PCSK9i). In addition, it has also been advocated that statins exhibit nonlipid, cardio-protective effects including improved cardiac nerve integrity, blood flow, and anti-inflammatory effects in congestive heart failure (HF) patients. Recent Findings In subjects after myocardial infarction treated with statins, \(^{123}\)I-metaiodobenzylguanidine (MIBG) scintigraphy has already revealed enhanced cardiac nerve function relative to patients without statins. In addition, all of those aforementioned statin-targeted pathways in HF can be visualized and monitored using dedicated cardiac radiotracers, e.g., \(^{123}\)I-MIBG or \(^{18}\)F-AF78 (for cardiac nerve function), \(^{18}\)F-flurpiridaz (to determine coronary flow) or \(^{68}\)Ga-PentixaFor (to detect inflammation). Summary Statins exhibit various cardio-beneficial effects, including improvement of cardiac nerve function, blood flow, and reduction of inflammation, which can all be imaged using dedicated nuclear cardiac radiotracers. This may allow for in vivo monitoring of statin-induced cardioprotection beyond lipid profiling in HF patients. KW - sympathetic nervous system KW - cardiac nerve KW - MIBG KW - inflammation KW - blood flow KW - statin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324599 VL - 24 IS - 12 ER - TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER -