TY - JOUR A1 - Marquardt, André A1 - Hartrampf, Philipp A1 - Kollmannsberger, Philip A1 - Solimando, Antonio G. A1 - Meierjohann, Svenja A1 - Kübler, Hubert A1 - Bargou, Ralf A1 - Schilling, Bastian A1 - Serfling, Sebastian E. A1 - Buck, Andreas A1 - Werner, Rudolf A. A1 - Lapa, Constantin A1 - Krebs, Markus T1 - Predicting microenvironment in CXCR4- and FAP-positive solid tumors — a pan-cancer machine learning workflow for theranostic target structures JF - Cancers N2 - (1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database — representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets. KW - machine learning KW - tumor microenvironment KW - immune infiltration KW - angiogenesis KW - mRNA KW - miRNA KW - transcriptome Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305036 SN - 2072-6694 VL - 15 IS - 2 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Weich, Alexander A1 - Higuchi, Takahiro A1 - Schmid, Jan S. A1 - Schirbel, Andreas A1 - Lassmann, Michael A1 - Wild, Vanessa A1 - Rudelius, Martina A1 - Kudlich, Theodor A1 - Herrmann, Ken A1 - Scheurlen, Michael A1 - Buck, Andreas K. A1 - Kropf, Saskia A1 - Wester, Hans-Jürgen A1 - Lapa, Constantin T1 - Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach JF - Theranostics N2 - C-X-C motif chemokine receptor 4 (CXCR4) and somatostatin receptors (SSTR) are overexpressed in gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In this study, we aimed to elucidate the feasibility of non-invasive CXCR4 positron emission tomography/computed tomography (PET/CT) imaging in GEP-NET patients using [\(^{68}\)Ga]Pentixafor in comparison to \(^{68}\)Ga-DOTA-D-Phe-Tyr3-octreotide ([\(^{68}\)Ga]DOTATOC) and \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG). Twelve patients with histologically proven GEP-NET (3xG1, 4xG2, 5xG3) underwent [\(^{68}\)Ga]DOTATOC, [\(^{18}\)F]FDG, and [\(^{68}\)Ga]Pentixafor PET/CT for staging and planning of the therapeutic management. Scans were analyzed on a patient as well as on a lesion basis and compared to immunohistochemical staining patterns of CXCR4 and somatostatin receptors SSTR2a and SSTR5. [\(^{68}\)Ga]Pentixafor visualized tumor lesions in 6/12 subjects, whereas [\(^{18}\)F]FDG revealed sites of disease in 10/12 and [\(^{68}\)Ga]DOTATOC in 11/12 patients, respectively. Regarding sensitivity, SSTR-directed PET was the superior imaging modality in all G1 and G2 NET. CXCR4-directed PET was negative in all G1 NET. In contrast, 50% of G2 and 80% of G3 patients exhibited [\(^{68}\)Ga]Pentixafor-positive tumor lesions. Whereas CXCR4 seems to play only a limited role in detecting well-differentiated NET, increasing receptor expression could be non-invasively observed with increasing tumor grade. Thus, [\(^{68}\)Ga]Pentixafor PET/CT might serve as non-invasive read-out for evaluating the possibility of CXCR4-directed endoradiotherapy in advanced dedifferentiated SSTR-negative tumors. KW - SSTR KW - peptide receptor radionuclide therapy KW - neuroendocrine tumor KW - [\(^{68}\)Ga]Pentixafor KW - CXCR4 KW - chemokine receptor KW - PET/CT KW - DOTATOC KW - PRRT KW - Positronen-Emissions-Tomografie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158008 VL - 7 IS - 6 ER - TY - JOUR A1 - Weich, Alexander A1 - Werner, Rudolf A. A1 - Buck, Andreas K. A1 - Hartrampf, Philipp E. A1 - Serfling, Sebastian E. A1 - Scheurlen, Michael A1 - Wester, Hans-Jürgen A1 - Meining, Alexander A1 - Kircher, Stefan A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Kircher, Malte T1 - CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas JF - Diagnostics N2 - We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer \(^{68}\)Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard \(^{18}\)F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-naïve patients with histologically proven NEC, who underwent \(^{18}\)F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. \(^{68}\)Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while \(^{18}\)F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, \(^{18}\)F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to \(^{68}\)Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard \(^{18}\)F-FDG PET/CT. KW - CXCR4 KW - NET KW - NEC KW - 68Ga-Pentixafor KW - 18F-FDG Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234231 SN - 2075-4418 VL - 11 IS - 4 ER -