TY - JOUR A1 - Werner, Rudolf A1 - Schmid, Jan-Stefan A1 - Higuchi, Takahiro A1 - Javadi, Mehrbod S. A1 - Rowe, Steven P. A1 - Märkl, Bruno A1 - Aulmann, Christoph A1 - Fassnacht, Martin A1 - Kroiß, Matthias A1 - Reiners, Christoph A1 - Buck, Andreas A1 - Kreissl, Michael A1 - Lapa, Constantin T1 - Predictive value of \(^{18}\)F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib JF - Journal of Nuclear Medicine N2 - Introduction: Therapeutic options in advanced medullary thyroid carcinoma (MTC) have markedly improved since the introduction of tyrosine kinase inhibitors (TKI). We aimed to assess the role of metabolic imaging using 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography/computed tomography (PET/CT) shortly before and 3 months after initiation of TKI treatment. Methods: Eighteen patients with advanced and progressive MTC scheduled for vandetanib treatment underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after TKI treatment initiation. During follow-up, CT scans were performed every 3 months and analyzed according to Response Evaluation Criteria In Solid Tumors (RECIST). The predictive value for estimating progression-free (PFS) and overall survival (OS) was examined by investigating \(^{18}\)F-FDG mean/maximum standardized uptake values (SUVmean/max) of the metabolically most active lesion as well as by analyzing clinical parameters (tumor marker doubling times {calcitonin, carcinoembryonic antigen (CEA)}, prior therapies, RET (rearranged during transfection) mutational status, and disease type). Results: Within a median follow-up of 5.2 years, 9 patients experienced disease progression after a median time interval of 2.1y whereas the remainder had ongoing disease control (n=5 partial response and n=4 stable disease). Eight of the 9 patients with progressive disease died from MTC after a median of 3.5y after TKI initiation. Pre-therapeutic SUVmean >4.0 predicted a significantly shorter PFS (PFS: 1.9y vs. 5.2y; p=0.04). Furthermore, sustained high 18F-FDG uptake at 3 months with a SUVmean>2.8 tended to portend an unfavorable prognosis with a PFS of 1.9y (vs. 3.5y; p=0.3). Prolonged CEA doubling times were significantly correlated with longer PFS (r=0.7) and OS (r=0.76, p<0.01, respectively). None of the other clinical parameters had prognostic significance. Conclusions: Pre-therapeutic \(^{18}\)F-FDG PET/CT holds prognostic information in patients with advanced MTC scheduled for treatment with the TKI vandetanib. Low tumor metabolism of SUVmean < 4.0 prior to treatment predicts longer progression-free survival. KW - positron emission tomography KW - Medullärer Schilddrüsenkrebs KW - Positronen-Emissions-Tomografie KW - medullary thyroid carcinoma KW - tyrosine kinase inhibitor KW - vandetanib KW - 2- deoxy-2-(18F)fluoro-D-glucose KW - 18F-FDG Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161256 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Jan-Stefan Schmid, Takahiro Higuchi, Mehrbod S. Javadi, Steven P. Rowe, Bruno Märkl, Christoph Aulmann, Martin Fassnacht, Matthias Kroiss, Christoph Reiners, Andreas K. Buck, Michael C. Kreissl, Constantin Lapa. Predictive value of 18F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med. May 1, 2018;vol. 59 no. 5: 756-761. © SNMMI. ER - TY - JOUR A1 - Werner, Rudolf A1 - Wakabyashi, Hiroshi A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Shinaji, Tetsuya A1 - Lapa, Constantin A1 - Rowe, Steven A1 - Javadi, Mehrbod A1 - Higuchi, Takahiro T1 - Functional renal imaging with \(^{18}\)F-FDS PET in rat models of renal disorders JF - Journal of Nuclear Medicine N2 - Background: Precise regional quantitative assessment of renal function is limited with conventional \(^{99m}\)Tc-labeled renal radiotracers. A recent study reported that the positron emission tomography (PET) radiotracer 2-deoxy-2-(\(^{18}\)F-fluorosorbitol (\(^{18}\)F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, (\(^{18}\)F-FDS is available via simple reduction from routinely used 2-deoxy-2-(\(^{18}\)F-fluoro-D-glucose ((\(^{18}\)F-FDG). We aimed to further investigate the potential of (\(^{18}\)F-FDS PET as a functional renal imaging agent using rat models of kidney diseases. Methods: Two different rat models of renal impairment were investigated: Glycerol induced acute renal failure (ARF) by intramuscular administration of glycerol in hind legs and unilateral ureteral obstruction (UUO) by ligation of the left ureter. 24h after these treatments, dynamic 30 min 18F-FDS PET data were acquired using a dedicated small animal PET system. Urine 18F-FDS radioactivity 30 min after radiotracer injection was measured together with co-injected \(^{99m}\)Tc-diethylenetriaminepentaacetic acid (\(^{99m}\)Tc-DTPA) urine activity. Results: Dynamic PET imaging demonstrated rapid (\(^{18}\)F-FDS accumulation in the renal cortex and rapid radiotracer excretion via kidneys in control healthy rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in ARF rats and UUO-treated kidneys. Measured urine radiotracer concentrations of (\(^{18}\)F-FDS and \(^{99m}\)Tc-DTPA were well correlated (R=0.84, P<0.05). Conclusions: (\(^{18}\)F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. Advantages of high spatiotemporal resolution of PET imaging and simple tracer production could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. KW - unilateral ureteral obstruction KW - Nierenfunktionsstörung KW - Positronen-Emissions-Tomografie KW - 18F-FDS KW - 99mTc-DTPA KW - PET KW - renal failure KW - Glomerular filtration Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161279 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Hiroshi Wakabayashi, Xinyu Chen, Mitsuru Hirano, Tetsuya Shinaji, Constantin Lapa, Steven P. Rowe, Mehrbod S. Javadi and Takahiro Higuchi. Functional renal imaging with 18F-FDS PET in rat models of renal disorders. J Nucl Med. May 1, 2018;vol. 59 no. 5: 828-832. © SNMMI. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Kobayashi, Ryohei A1 - Javadi, Mehrbod Som A1 - Köck, Zoe A1 - Wakabayashi, Hiroshi A1 - Unterecker, Stefan A1 - Nakajima, Kenichi A1 - Lapa, Constantin A1 - Menke, Andreas A1 - Higuchi, Takahiro T1 - Impact of Novel Antidepressants on Cardiac Metaiodobenzylguanidine (mIBG) Uptake: Experimental Studies in SK-N-SH Cells and Healthy Rabbits JF - Journal of Nuclear Medicine N2 - Background: \(^{123}\)I-metaiodobenzylguanidine (mIBG) provides independent prognostic value for risk stratification among heart failure patients, but the use of concomitant medication should not impact its quantitative information. We aimed to evaluate the four most-prescribed antidepressants currently used as a first‑line treatment for patients with major depressive disorder (MDD) and their potential on altering mIBG imaging results. Methods: The inhibition effect of four different types of antidepressants (desipramine, escitalopram, venlafaxine and bupropion) for MDD treatment on \(^{131}\)I-mIBG uptake was assessed by in-vitro cell uptake assays using human neuroblastoma SK-N-SH cells. The half maximal inhibitory concentration (IC50) of tracer uptake was determined from dose-response curves. To evaluate the effects of IV pretreatment with desipramine (1.5 mg/kg) and escitalopram (2.5, 15 mg/kg) on mIBG cardiac uptake, in-vivo planar 123I-mIBG scans in healthy New Zealand White Rabbits were conducted. Results: The IC50 values of desipramine, escitalopram, venlafaxine and bupropion on \(^{131}\)I-mIBG cellular uptake were 11.9 nM, 7.5 μM, 4.92 μM, and 12.9 μM, respectively. At the maximum serum concentration (Cmax, as derived by previous clinical trials), the inhibition rates of 131I-mIBG uptake were 90.6 % for desipramine, 25.5 % for venlafaxine, 11.7 % for bupropion and 0.72 % for escitalopram. A low inhibition rate for escitalopram in the cell uptake study triggered investigation of an in-vivo rabbit model: with dosage considerably higher than clinical practice, the non-inhibitory effect of escitalopram was confirmed. Furthermore, pretreatment with desipramine led to a marked reduction of cardiac 123I-mIBG uptake. Conclusions: In the present in-vitro binding assay and in-vivo rabbit study, the selective-serotonin reuptake inhibitor escitalopram had no major impact on neuronal cardiac mIBG uptake within therapeutic dose ranges, while other types of first-line antidepressants for MDD treatment led to a significant decrease. These preliminary results warrant further confirmatory clinical trials regarding the reliability of cardiac mIBG imaging, in particular, if the patient’s neuropsychiatric status would not tolerate withdrawal of a potentially norepinephrine interfering antidepressant. KW - MDD KW - Antidepressants KW - depression KW - 123I-mIBG KW - antidepressant KW - cardiac sympathetic nerve system KW - major depressive disorder KW - myocardial sympathetic innervation imaging Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161280 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Ryohei Kobayashi, Mehrbod Som Javadi, Zoe Köck, Hiroshi Wakabayashi, Stefan Unterecker, Kenichi Nakajima, Constantin Lapa, Andreas Menke, Takahiro Higuchi. Impact of Novel Antidepressants on Cardiac Metaiodobenzylguanidine (mIBG) Uptake: Experimental Studies in SK-N-SH Cells and Healthy Rabbits. J. Nucl. Med. July 1, 2018, vol. 59, no. 7, 1099-1103. © SNMMI. ER - TY - JOUR A1 - Werner, Rudolf A1 - Solnes, Lilja A1 - Javadi, Mehrbod A1 - Weich, Alexander A1 - Gorin, Michael A1 - Pienta, Kenneth A1 - Higuchi, Takahiro A1 - Buck, Andreas A1 - Pomper, Martin A1 - Rowe, Steven A1 - Lapa, Constantin T1 - SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework JF - Journal of Nuclear Medicine N2 - Reliable standards and criteria for somatostatin receptor (SSTR) positron emission tomography (PET) are still lacking. We herein propose a structured reporting system on a 5-point scale for SSTR-PET imaging, titled SSTR-RADS version 1.0, which might serve as a standardized assessment for both diagnosis and treatment planning in neuroendocrine tumors (NET). SSTR-RADS could guide the imaging specialist in interpreting SSTR-PET scans, facilitate communication with the referring clinician so that appropriate work-up for equivocal findings is pursued, and serve as a reliable tool for patient selection for planned Peptide Receptor Radionuclide Therapy. KW - Radionuclide Therapy KW - Standardisierung KW - Positronen-Emissions-Tomografie KW - 68Ga-DOTATATE/-TOC KW - Gastrointestinal KW - Neuroendocrine KW - Neuroendocrine Tumor KW - Oncology KW - GI KW - PET KW - PET/CT KW - PRRT KW - RADS KW - SSTR Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161298 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Lilja B. Solnes, Mehrbod Som Javadi, Alexander Weich, Michael A. Gorin, Kenneth J. Pienta, Takahiro Higuchi, Andreas K. Buck, Martin G. Pomper, Steven P. Rowe, Constantin Lapa. SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework. J. Nucl. Med. July 1, 2018, vol. 59, no. 7, 1085-1091. © SNMMI ER - TY - JOUR A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Werner, Rudolf A. A1 - Decker, Michael A1 - Higuchi, Takahiro T1 - Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System JF - ACS Omega N2 - Renin–angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5% radiochemical yield and >99% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis. KW - FV45 KW - Positronen-Emissions-Tomografie KW - renin-angiotensin system KW - angiotensin II type 1 receptor KW - valsartan KW - positron emission tomography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167144 SN - 2470-1343 N1 - This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html), which permits copying and redistribution of the article or any adaptations for non-commercial purposes. VL - 3 IS - 9 ER - TY - JOUR A1 - Werner, Rudolf A. T1 - Editorial: Cardiac Innervation Imaging as a Risk Stratification Tool for Potential Device Therapy Candidates JF - Journal of Nuclear Cardiology N2 - As a scintigraphic approach evaluating cardiac nerve integrity, \(^{123}\)I-metaiodobenzylguanidine (123I-mIBG) has been recently Food and Drug Administration approved. A great deal of progress has been made by the prospective ADMIRE-HF trial, which primarily demonstrated the association of denervated myocardium assessed by \(^{123}\)I-mIBG and cardiac events. However, apart from risk stratification, myocardial nerve function evaluated by molecular imaging should also be expanded to other clinical contexts, in particular to guide the referring cardiologist in selecting appropriate candidates for specific therapeutic interventions. In the present issue of the Journal of Nuclear Cardiology, the use of 123I-mIBG for identifying cardiomyopathy patients, which would most likely not benefit from ICD due low risk of arrhythmias, is described. If we aim to deliver on the promise of cardiac innervation imaging as a powerful tool for risk stratification in a manner similar to nuclear oncology, studies such as the one reviewed here may imply an important step to lay the proper groundwork for a more widespread adoption in clinical practice. KW - SPECT KW - SPECT KW - myocardial nerve KW - 123I-metaiodobenzylguanidine KW - 123I-mIBG KW - cardiac nerve KW - ICD KW - arrhythmia KW - cardiac innervation imaging Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168465 UR - https://rdcu.be/970i SN - 1071-3581 N1 - SharedIt-Link zur Publikation: https://rdcu.be/970i N1 - This is a post-peer-review, pre-copyedit version of an article published in Journal of Nuclear Cardiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12350-018-01475-0 ER - TY - JOUR A1 - Werner, Rudolf A1 - Wakabayashi, Hiroshi A1 - Bauer, Jochen A1 - Schütz, Claudia A1 - Zechmeister, Christina A1 - Hayakawa, Nobuyuki A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Jahns, Roland A1 - Ergün, Süleyman A1 - Jahns, Valerie A1 - Higuchi, Takahiro T1 - Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis JF - European Heart Journal Cardiovascular Imaging N2 - Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund’s adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis. KW - positron emission tomography KW - Myokarditis KW - myocarditis KW - inflammation KW - 18F-FDG KW - PET KW - personalized treatment Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165601 SN - 2047-2404 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Maya, Yoshifumi A1 - Eissler, Christoph A1 - Hirano, Mitsuru A1 - Nose, Naoko A1 - Wakabayashi, Hiroshi A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart JF - Scientific Reports N2 - We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (−)-metaraminol as the free base (radiochemical purity >95%) and a wide range of specific activities (0.2–141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2–60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals. KW - ageing KW - Positronen-Emissions-Tomografie KW - 11C-HED KW - 11C-Hydroxyephedrine KW - cardiac sympathetic nervous system KW - myocardial sympathetic innervation imaging KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164826 SN - 2281-5872 VL - 8 IS - 11120 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging JF - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - PET KW - PSMA-PET KW - Positron Emission Tomography KW - Prostate Cancer KW - Virchow Node Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164632 SN - 0090-4295 VL - 117 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers JF - The International Journal of Cardiovascular Imaging N2 - The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed. KW - heart failure with mid-range ejection fraction KW - Positronenemissionstomografie KW - coronary artery disease KW - precision medicine KW - positron emission tomography KW - PET KW - SPECT KW - myocardial perfusion imaging KW - MPI KW - 18F-flurpiridaz KW - 18FFBnTP KW - HFmrEF Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169134 SN - 1569-5794 ER -