TY - JOUR A1 - Werner, Rudolf A1 - Schmid, Jan-Stefan A1 - Higuchi, Takahiro A1 - Javadi, Mehrbod S. A1 - Rowe, Steven P. A1 - Märkl, Bruno A1 - Aulmann, Christoph A1 - Fassnacht, Martin A1 - Kroiß, Matthias A1 - Reiners, Christoph A1 - Buck, Andreas A1 - Kreissl, Michael A1 - Lapa, Constantin T1 - Predictive value of \(^{18}\)F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib JF - Journal of Nuclear Medicine N2 - Introduction: Therapeutic options in advanced medullary thyroid carcinoma (MTC) have markedly improved since the introduction of tyrosine kinase inhibitors (TKI). We aimed to assess the role of metabolic imaging using 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography/computed tomography (PET/CT) shortly before and 3 months after initiation of TKI treatment. Methods: Eighteen patients with advanced and progressive MTC scheduled for vandetanib treatment underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after TKI treatment initiation. During follow-up, CT scans were performed every 3 months and analyzed according to Response Evaluation Criteria In Solid Tumors (RECIST). The predictive value for estimating progression-free (PFS) and overall survival (OS) was examined by investigating \(^{18}\)F-FDG mean/maximum standardized uptake values (SUVmean/max) of the metabolically most active lesion as well as by analyzing clinical parameters (tumor marker doubling times {calcitonin, carcinoembryonic antigen (CEA)}, prior therapies, RET (rearranged during transfection) mutational status, and disease type). Results: Within a median follow-up of 5.2 years, 9 patients experienced disease progression after a median time interval of 2.1y whereas the remainder had ongoing disease control (n=5 partial response and n=4 stable disease). Eight of the 9 patients with progressive disease died from MTC after a median of 3.5y after TKI initiation. Pre-therapeutic SUVmean >4.0 predicted a significantly shorter PFS (PFS: 1.9y vs. 5.2y; p=0.04). Furthermore, sustained high 18F-FDG uptake at 3 months with a SUVmean>2.8 tended to portend an unfavorable prognosis with a PFS of 1.9y (vs. 3.5y; p=0.3). Prolonged CEA doubling times were significantly correlated with longer PFS (r=0.7) and OS (r=0.76, p<0.01, respectively). None of the other clinical parameters had prognostic significance. Conclusions: Pre-therapeutic \(^{18}\)F-FDG PET/CT holds prognostic information in patients with advanced MTC scheduled for treatment with the TKI vandetanib. Low tumor metabolism of SUVmean < 4.0 prior to treatment predicts longer progression-free survival. KW - positron emission tomography KW - Medullärer Schilddrüsenkrebs KW - Positronen-Emissions-Tomografie KW - medullary thyroid carcinoma KW - tyrosine kinase inhibitor KW - vandetanib KW - 2- deoxy-2-(18F)fluoro-D-glucose KW - 18F-FDG Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161256 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Jan-Stefan Schmid, Takahiro Higuchi, Mehrbod S. Javadi, Steven P. Rowe, Bruno Märkl, Christoph Aulmann, Martin Fassnacht, Matthias Kroiss, Christoph Reiners, Andreas K. Buck, Michael C. Kreissl, Constantin Lapa. Predictive value of 18F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med. May 1, 2018;vol. 59 no. 5: 756-761. © SNMMI. ER - TY - CHAP A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Nose, Naoko A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart T2 - Journal of Nuclear Medicine N2 - No abstract available. KW - Positronen-Emissions-Tomografie KW - moycardial sympathetic innervation KW - Positronen-Emissions-Tomografie KW - positron emission tomography KW - PET KW - 11C-HED KW - hydroxyephedrine KW - ageing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162228 UR - http://jnm.snmjournals.org/content/59/supplement_1/100.abstract SN - 0161-5505 VL - 59 IS - Supplement No 1 ER - TY - JOUR A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Werner, Rudolf A. A1 - Decker, Michael A1 - Higuchi, Takahiro T1 - Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System JF - ACS Omega N2 - Renin–angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5% radiochemical yield and >99% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis. KW - FV45 KW - Positronen-Emissions-Tomografie KW - renin-angiotensin system KW - angiotensin II type 1 receptor KW - valsartan KW - positron emission tomography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167144 SN - 2470-1343 N1 - This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html), which permits copying and redistribution of the article or any adaptations for non-commercial purposes. VL - 3 IS - 9 ER - TY - JOUR A1 - Werner, Rudolf A1 - Wakabayashi, Hiroshi A1 - Bauer, Jochen A1 - Schütz, Claudia A1 - Zechmeister, Christina A1 - Hayakawa, Nobuyuki A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Jahns, Roland A1 - Ergün, Süleyman A1 - Jahns, Valerie A1 - Higuchi, Takahiro T1 - Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis JF - European Heart Journal Cardiovascular Imaging N2 - Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund’s adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis. KW - positron emission tomography KW - Myokarditis KW - myocarditis KW - inflammation KW - 18F-FDG KW - PET KW - personalized treatment Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165601 SN - 2047-2404 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers JF - The International Journal of Cardiovascular Imaging N2 - The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed. KW - heart failure with mid-range ejection fraction KW - Positronenemissionstomografie KW - coronary artery disease KW - precision medicine KW - positron emission tomography KW - PET KW - SPECT KW - myocardial perfusion imaging KW - MPI KW - 18F-flurpiridaz KW - 18FFBnTP KW - HFmrEF Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169134 SN - 1569-5794 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Higuchi, Takahiro A1 - Javadi, Mehrbod S. A1 - Rowe, Steven P. A1 - Zsótér, Norbert A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Kreissl, Michael C. A1 - Lapa, Constantin T1 - Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib JF - Endocrine N2 - Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction. KW - personalized medicine KW - Positronen-Emissions-Tomografie KW - medullary thyroid carcinoma KW - tyrosine kinase inhibitor KW - TKI KW - vandetanib KW - 18F-FDG KW - positron emission tomography KW - 2-deoxy-2-(18F)fluoro-D-glucose KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167910 SN - 1355-008X ER - TY - JOUR A1 - Chen, Xinyu A1 - Werner, Rudolf A. A1 - Lapa, Constantin A1 - Nose, Naoko A1 - Hirano, Mitsuru A1 - Javadi, Mehrbod S. A1 - Robinson, Simon A1 - Higuchi, Takahiro T1 - Subcellular storage and release mode of the novel \(^{18}\)F-labeled sympathetic nerve PET tracer LMI1195 JF - EJNMMI Research N2 - Background: \(^{18}\)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (\(^{18}\)F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Results: Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of \(^{18}\)F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. \(^{131}\)I-meta-iodobenzylguanidine (\(^{131}\)I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced \(^{18}\)F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca\(^{2+}\)-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca\(^{2+}\) influx resulting from membrane depolarization. Conclusions: Analogous to \(^{131}\)I-MIBG, the current in vitro tracer uptake study confirmed that \(^{131}\)F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of \(^{18}\)FLMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation. KW - phaeochromocytoma KW - Positronen-Emissions-Tomografie KW - heart failure KW - sympathetic nervous system KW - storage vesicle turnover KW - positron emission tomography KW - 18F-LMI1195 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167081 SN - 2191-219X VL - 8 IS - 12 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Hirano, Mitsuru A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans JF - Clinical and Translational Imaging N2 - Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run. KW - single photon emission computed tomography: sympathetic nerve KW - Positronen-Emissions-Tomografie KW - 18F-LMI1195 KW - 11C-hydroxyephedrine KW - 123I-metaiodobenzylguanidine KW - positron emission tomography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163628 SN - 2281-5872 ER -