TY - JOUR A1 - Oliveira-Ferrer, Leticia A1 - Schmalfeldt, Barbara A1 - Dietl, Johannes A1 - Bartmann, Catharina A1 - Schumacher, Udo A1 - Stürken, Christine T1 - Ovarian cancer-cell pericellular hyaluronan deposition negatively impacts prognosis of ovarian cancer patients JF - Biomedicines N2 - Background: Hyaluronan (HA), a component of the extracellular matrix, is frequently increased under pathological conditions including cancer. Not only stroma cells but also cancer cells themselves synthesize HA, and the interaction of HA with its cognate receptors promotes malignant progression and metastasis. Methods: In the present study, HA deposition in tissue sections was analyzed by hyaluronan-binding protein (HABP) ligand histochemistry in 17 borderline tumors and 102 primary and 20 recurrent ovarian cancer samples. The intensity and, particularly, localization of the HA deposition were recorded: for the localization, the pericellular deposition around the ovarian cancer cells was distinguished from the deposition within the stromal compartment. These histochemical data were correlated with clinical and pathological parameters. Additionally, within a reduced subgroup of ovarian cancer samples (n = 70), the RNA levels of several HA-associated genes were correlated with the HA localization and intensity. Results: Both stroma-localized and pericellular tumor-cell-associated HA deposition were observed. Cancer-cell pericellular HA deposition, irrespective of its staining intensity, was significantly associated with malignancy, and in the primary ovarian cancer cohort, it represents an independent unfavorable prognostic marker for overall survival. Furthermore, a significant association between high CD44, HAS2 and HAS3 mRNA levels and a cancer-cell pericellular HA-deposition pattern was noted. In contrast, stromal hyaluronan deposition had no impact on ovarian cancer prognosis. Conclusions: In conclusion, the site of HA deposition is of prognostic value, but the amount deposited is not. The significant association of only peritumoral cancer-cell HA deposition with high CD44 mRNA expression levels suggests a pivotal role of the CD44–HA signaling axis for malignant progression in ovarian cancer. KW - ovarian cancer KW - stromal hyaluronan KW - tumor-associated hyaluronan staining pattern KW - hyaluronan-related enzymes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297539 SN - 2227-9059 VL - 10 IS - 11 ER - TY - JOUR A1 - Häder, Antje A1 - Schäuble, Sascha A1 - Gehlen, Jan A1 - Thielemann, Nadja A1 - Buerfent, Benedikt C. A1 - Schüller, Vitalia A1 - Hess, Timo A1 - Wolf, Thomas A1 - Schröder, Julia A1 - Weber, Michael A1 - Hünniger, Kerstin A1 - Löffler, Jürgen A1 - Vylkova, Slavena A1 - Panagiotou, Gianni A1 - Schumacher, Johannes A1 - Kurzai, Oliver T1 - Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity JF - Nature Communications N2 - Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases. KW - antimicrobial responses KW - immunogenetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357441 VL - 14 ER - TY - JOUR A1 - Graus, Dorothea A1 - Konrad, Kai R. A1 - Bemm, Felix A1 - Nebioglu, Meliha Görkem Patir A1 - Lorey, Christian A1 - Duscha, Kerstin A1 - Güthoff, Tilman A1 - Herrmann, Johannes A1 - Ferjani, Ali A1 - Cuin, Tracey Ann A1 - Roelfsema, M. Rob G. A1 - Schumacher, Karin A1 - Neuhaus, H. Ekkehard A1 - Marten, Irene A1 - Hedrich, Rainer T1 - High V-PPase activity is beneficial under high salt loads, but detrimental without salinity JF - New Phytologist N2 - The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration. KW - cell death KW - plasma membrane voltage KW - proton pump currents KW - salt KW - vacuolar pH KW - vacuolar proton-ATPase (V-ATPase) KW - vacuolar proton-pyrophosphatase (V-PPase) Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227553 VL - 219 ER -