TY - JOUR A1 - Bencurova, Elena A1 - Shityakov, Sergey A1 - Schaack, Dominik A1 - Kaltdorf, Martin A1 - Sarukhanyan, Edita A1 - Hilgarth, Alexander A1 - Rath, Christin A1 - Montenegro, Sergio A1 - Roth, Günter A1 - Lopez, Daniel A1 - Dandekar, Thomas T1 - Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration JF - Frontiers in Bioengineering and Biotechnology N2 - The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories. KW - nanocellulose KW - DNA storage KW - light-gated proteins KW - single-electron transistors KW - protein chip Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283033 SN - 2296-4185 VL - 10 ER - TY - JOUR A1 - Karnati, Srikanth A1 - Guntas, Gulcan A1 - Rajendran, Ranjithkumar A1 - Shityakov, Sergey A1 - Höring, Marcus A1 - Liebisch, Gerhard A1 - Kosanovic, Djuro A1 - Ergün, Süleyman A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Quantitative lipidomic analysis of Takotsubo syndrome patients' serum JF - Frontiers in Cardiovascular Medicine N2 - Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future. KW - TTS KW - inflammation KW - lipids KW - TNF-α KW - IL6 KW - PIK3R1 KW - NF-kappa-B KW - phosphatidylinositol Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270832 SN - 2297-055X VL - 9 IS - 797154 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Nagai, Michiaki A1 - Ergün, Süleyman A1 - Braunger, Barbara M. A1 - Förster, Carola Y. T1 - The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function JF - Biomolecules N2 - Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted. KW - diabetic retinopathy KW - diabetes mellitus KW - microvascular complications KW - diabetic nephropathy KW - heart failure KW - microRNA KW - neurotrophins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285966 SN - 2218-273X VL - 12 IS - 8 ER - TY - JOUR A1 - Esmaeilpour, Donya A1 - Broscheit, Jens Albert A1 - Shityakov, Sergey T1 - Cyclodextrin-based polymeric materials bound to corona protein for theranostic applications JF - International Journal of Molecular Sciences N2 - Cyclodextrins (CDs) are cyclic oligosaccharide structures that could be used for theranostic applications in personalized medicine. These compounds have been widely utilized not only for enhancing drug solubility, stability, and bioavailability but also for controlled and targeted delivery of small molecules. These compounds can be complexed with various biomolecules, such as peptides or proteins, via host-guest interactions. CDs are amphiphilic compounds with water-hating holes and water-absorbing surfaces. Architectures of CDs allow the drawing and preparation of CD-based polymers (CDbPs) with optimal pharmacokinetic and pharmacodynamic properties. These polymers can be cloaked with protein corona consisting of adsorbed plasma or extracellular proteins to improve nanoparticle biodistribution and half-life. Besides, CDs have become famous in applications ranging from biomedicine to environmental sciences. In this review, we emphasize ongoing research in biomedical fields using CD-based centered, pendant, and terminated polymers and their interactions with protein corona for theranostic applications. Overall, a perusal of information concerning this novel approach in biomedicine will help to implement this methodology based on host-guest interaction to improve therapeutic and diagnostic strategies. KW - cyclodextrin KW - theranostics KW - protein corona KW - nanomedicine KW - therapy KW - polymers Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297399 SN - 1422-0067 VL - 23 IS - 21 ER - TY - JOUR A1 - Fareed, Muhammad Mazhar A1 - Qasmi, Maryam A1 - Aziz, Shaan A1 - Völker, Elisabeth A1 - Förster, Carola Yvette A1 - Shityakov, Sergey T1 - The role of clusterin transporter in the pathogenesis of Alzheimer’s disease at the blood–brain barrier interface: a systematic review JF - Biomolecules N2 - Alzheimer’s disease (AD) is considered a chronic and debilitating neurological illness that is increasingly impacting older-age populations. Some proteins, including clusterin (CLU or apolipoprotein J) transporter, can be linked to AD, causing oxidative stress. Therefore, its activity can affect various functions involving complement system inactivation, lipid transport, chaperone activity, neuronal transmission, and cellular survival pathways. This transporter is known to bind to the amyloid beta (Aβ) peptide, which is the major pathogenic factor of AD. On the other hand, this transporter is also active at the blood–brain barrier (BBB), a barrier that prevents harmful substances from entering and exiting the brain. Therefore, in this review, we discuss and emphasize the role of the CLU transporter and CLU-linked molecular mechanisms at the BBB interface in the pathogenesis of AD. KW - clusterin transporter KW - Wnt signaling KW - Alzheimer’s disease KW - AD pathogenesis KW - blood–brain barrier KW - apolipoprotein J Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290279 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Förster, Carola Y. A1 - Shityakov, Sergey A1 - Scheper, Verena A1 - Lenarz, Thomas T1 - Linking cerebrovascular dysfunction to age-related hearing loss and Alzheimer’s disease — are systemic approaches for diagnosis and therapy required? JF - Biomolecules N2 - Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future. KW - Alzheimer’s disease KW - age-related hearing loss KW - neurovasculature KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - pharmacotherapy KW - neurotrophic factor KW - inner ear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297552 SN - 2218-273X VL - 12 IS - 11 ER -