TY - JOUR A1 - Khan, Muhammad Usman A1 - Pirzadeh, Maryam A1 - Förster, Carola Yvette A1 - Shityakov, Sergey A1 - Shariati, Mohammad Ali T1 - Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives JF - Biomolecules N2 - Milk-derived antibacterial peptides (ABPs) are protein fragments with a positive influence on the functions and conditions of a living organism. Milk-derived ABPs have several useful properties important for human health, comprising a significant antibacterial effect against various pathogens, but contain toxic side-effects. These compounds are mainly produced from milk proteins via fermentation and protein hydrolysis. However, they can also be produced using recombinant DNA techniques or organic synthesis. This review describes the role of milk-derived ABPs in modern food biotechnology with an emphasis on their synthesis and applications. Additionally, we also discuss the mechanisms of action and the main bioproperties of ABPs. Finally, we explore future perspectives for improving ABP physicochemical properties and diminishing their toxic side-effects. KW - milk proteins KW - bioactive peptide KW - antibacterial activity KW - fermentation KW - protein hydrolysis KW - recombinant DNA KW - peptide synthesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197610 SN - 2218-273X VL - 8 IS - 4 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - In silico designed Axl receptor blocking drug candidates against Zika virus infection JF - ACS Omega N2 - After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies. KW - free energy KW - molecular docking KW - molecular dynamics KW - simulation KW - pharmacology KW - proteins KW - structure-activity relationship KW - viruses KW - Zika virus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176739 VL - 3 IS - 5 ER -