TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Faber, Jessica A1 - Andrade Mier, Mateo A1 - Hauptstein, Julia A1 - Pal, Arindam A1 - Forster, Leonard A1 - Hazur, Jonas A1 - Boccaccini, Aldo R. A1 - Detsch, Rainer A1 - Teßmar, Jörg A1 - Budday, Silvia A1 - Blunk, Torsten A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation JF - Advanced Healthcare Materials N2 - 3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30–500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases. KW - 3D model systems KW - melt electrowriting KW - cortical neurons KW - astrocytes KW - Ca\(^{2+}\)-Imaging KW - hyaluronic acid Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318682 VL - 11 IS - 21 ER - TY - JOUR A1 - Fischhaber, Natalie A1 - Faber, Jessica A1 - Bakirci, Ezgi A1 - Dalton, Paul D. A1 - Budday, Silvia A1 - Villmann, Carmen A1 - Schaefer, Natascha T1 - Spinal Cord Neuronal Network Formation in a 3D Printed Reinforced Matrix-A Model System to Study Disease Mechanisms JF - Advanced Healthcare Materials N2 - 3D cell cultures allow a better mimicry of the biological and mechanical environment of cells in vivo compared to 2D cultures. However, 3D cell cultures have been challenging for ultrasoft tissues such as the brain. The present study uses a microfiber reinforcement approach combining mouse primary spinal cord neurons in Matrigel with melt electrowritten (MEW) frames. Within these 3D constructs, neuronal network development is followed for 21 days in vitro. To evaluate neuronal development in 3D constructs, the maturation of inhibitory glycinergic synapses is analyzed using protein expression, the complex mechanical properties by assessing nonlinearity, conditioning, and stress relaxation, and calcium imaging as readouts. Following adaptation to the 3D matrix-frame, mature inhibitory synapse formation is faster than in 2D demonstrated by a steep increase in glycine receptor expression between days 3 and 10. The 3D expression pattern of marker proteins at the inhibitory synapse and the mechanical properties resemble the situation in native spinal cord tissue. Moreover, 3D spinal cord neuronal networks exhibit intensive neuronal activity after 14 days in culture. The spinal cord cell culture model using ultrasoft matrix reinforced by MEW fibers provides a promising tool to study and understand biomechanical mechanisms in health and disease. KW - 3D cell cultures KW - spinal cord neurons KW - neuronal networks KW - mouse Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256353 VL - 10 IS - 19 ER -