TY - JOUR A1 - Roth, Nicolas A1 - Doerfler, Inken A1 - Bässler, Claus A1 - Blaschke, Markus A1 - Bussler, Heinz A1 - Gossner, Martin M. A1 - Heideroth, Antje A1 - Thorn, Simon A1 - Weisser, Wolfgang W. A1 - Müller, Jörg T1 - Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity JF - Diversity and Distributions N2 - Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests. KW - dead-wood enrichment KW - integrative management strategy KW - land sharing KW - lowland beech forests KW - saproxylic organisms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227061 VL - 25 IS - 3 ER - TY - JOUR A1 - Thorn, Simon A1 - Chao, Anne A1 - Georgiev, Konstadin B. A1 - Müller, Jörg A1 - Bässler, Claus A1 - Campbell, John L. A1 - Jorge, Castro A1 - Chen, Yan-Han A1 - Choi, Chang-Yong A1 - Cobb, Tyler P. A1 - Donato, Daniel C. A1 - Durska, Ewa A1 - Macdonald, Ellen A1 - Feldhaar, Heike A1 - Fontaine, Jospeh B. A1 - Fornwalt, Paula J. A1 - Hernández Hernández, Raquel María A1 - Hutto, Richard L. A1 - Koivula, Matti A1 - Lee, Eun-Jae A1 - Lindenmayer, David A1 - Mikusinski, Grzegorz A1 - Obrist, Martin K. A1 - Perlík, Michal A1 - Rost, Josep A1 - Waldron, Kaysandra A1 - Wermelinger, Beat A1 - Weiß, Ingmar A1 - Zmihorski, Michal A1 - Leverkus, Alexandro B. T1 - Estimating retention benchmarks for salvage logging to protect biodiversity JF - Nature Communications N2 - Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity. However, there are no evidence-based benchmarks for the proportion of area of naturally disturbed forests to be excluded from salvage logging to conserve biodiversity. We apply a mixed rarefaction/extrapolation approach to a global multi-taxa dataset from disturbed forests, including birds, plants, insects and fungi, to close this gap. We find that 757% (mean +/- SD) of a naturally disturbed area of a forest needs to be left unlogged to maintain 90% richness of its unique species, whereas retaining 50% of a naturally disturbed forest unlogged maintains 73 +/- 12% of its unique species richness. These values do not change with the time elapsed since disturbance but vary considerably among taxonomic groups. Salvage logging has become a common practice to gain economic returns from naturally disturbed forests, but it could have considerable negative effects on biodiversity. Here the authors use a recently developed statistical method to estimate that ca. 75% of the naturally disturbed forest should be left unlogged to maintain 90% of the species unique to the area. KW - natural disturbance KW - bird communities KW - forest KW - management KW - beetle KW - conservation KW - windthrow KW - diversity KW - impact KW - fire Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230512 VL - 11 ER - TY - JOUR A1 - Vogel, Sebastian A1 - Gossner, Martin M. A1 - Mergner, Ulrich A1 - Müller, Jörg A1 - Thorn, Simon T1 - Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach JF - Journal of Applied Ecology N2 - The enrichment of deadwood is essential for the conservation of saproxylic biodiversity in managed forests. However, existing strategies focus on a cost‐intensive increase of deadwood amount, while largely neglecting increasing deadwood diversity. Deadwood objects, that is logs and branches, from six tree species were experimentally sun exposed, canopy shaded and artificially shaded for 4 years, after which the alpha‐, beta‐ and gamma‐diversity of saproxylic beetles, wood‐inhabiting fungi and spiders were analysed. Analyses of beta‐diversity included the spatial distance between exposed deadwood objects. A random‐drawing procedure was used to identify the combination of tree species and sun exposure that yielded the highest gamma‐diversity at a minimum of exposed deadwood amount. In sun‐exposed plots, species numbers in logs were higher than in shaded plots for all taxa, while in branches we observed the opposite for saproxylic beetles. Tree species affected the species numbers only of saproxylic beetles and wood‐inhabiting fungi. The beta‐diversity of saproxylic beetles and wood‐inhabiting fungi among logs was influenced by sun exposure and tree species, but beta‐diversity of spiders by sun exposure only. For all saproxylic taxa recorded in logs, differences between communities increased with increasing spatial distance. A combination of canopy‐shaded Carpinus logs and sun‐exposed Populus logs resulted in the highest species numbers of all investigated saproxylic taxa among all possible combinations of tree species and sun‐exposure treatments. Synthesis and applications. We recommend incorporating the enrichment of different tree species and particularly the variation in sun exposure into existing strategies of deadwood enrichment. Based on the results of our study, we suggest to combine the logs of softwood broadleaf tree species (e.g. Carpinus, Populus), hardwood broadleaf tree species (e.g. Quercus) and coniferous tree species (e.g. Pinus) under different conditions of sun exposure and distribute them spatially in a landscape to maximize the beneficial effects on overall diversity. KW - broadleaf tree species KW - deadwood enrichment KW - forest conservation KW - forest management KW - saproxylic beetles KW - spiders KW - sun exposure KW - wood‐inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214614 VL - 57 IS - 10 SP - 2075 EP - 2085 ER - TY - JOUR A1 - Müller, Jörg A1 - Ulyshen, Mike A1 - Seibold, Sebastian A1 - Cadotte, Marc A1 - Chao, Anne A1 - Bässler, Claus A1 - Vogel, Sebastian A1 - Hagge, Jonas A1 - Weiß, Ingmar A1 - Baldrian, Petr A1 - Tláskal, Vojtěch A1 - Thorn, Simon T1 - Primary determinants of communities in deadwood vary among taxa but are regionally consistent JF - Oikos N2 - The evolutionary split between gymnosperms and angiosperms has far‐reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2‐tree species and 6‐tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp‐detected fungal assemblages, decay stage and host tree for DNA‐detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi‐taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood. KW - deadwood experiments KW - dispersal KW - forest management KW - habitat filter KW - wood-inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228201 VL - 129 IS - 10 SP - 1579 EP - 1588 ER - TY - JOUR A1 - Doerfler, Inken A1 - Cadotte, Marc W. A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Gossner, Martin M. A1 - Heibl, Christoph A1 - Bässler, Claus A1 - Thorn, Simon A1 - Seibold, Sebastian T1 - Restoration‐oriented forest management affects community assembly patterns of deadwood‐dependent organisms JF - Journal of Applied Ecology N2 - Land‐use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land‐use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi‐taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood‐dependent) beetles and fungi, as well as non‐saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional–phylogenetic diversity, community‐weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally–phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non‐saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional–phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management‐induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity. KW - assembly mechanisms KW - beech forest KW - community‐weighted mean KW - deadwood enrichment KW - habitat heterogeneity KW - restoration strategy KW - saproxylic species KW - species traits Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217918 VL - 57 IS - 12 SP - 2429 EP - 2440 ER - TY - JOUR A1 - Roth, Nicolas A1 - Zoder, Sebastian A1 - Zaman, Assad Ali A1 - Thorn, Simon A1 - Schmidl, Jürgen T1 - Long‐term monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years JF - Insect Conservation and Diversity N2 - Lentic freshwater organisms are influenced by a multitude of factors, including geomorphology, hydrology, anthropogenic impacts and climate change. Organisms that depend on patchy resources such as water beetles may also be sensitive to anthropogenic habitat degradation, like pollution, eutrophication, water level or management alteration. To assess composition and ecological trends in the water beetle communities of Central Europe, we sampled water beetles (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. We used manual, time‐standardised capture during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. During the 28‐year survey period, we captured a total of 81 species. We found annual declines in both species number (ca −1%) and abundance (ca −2%). Also, community composition showed significant changes over time. The significant impact of pH on the community composition suggests that the recorded changes through time partly reflect natural succession processes. However, a pronounced decline of beetle species belonging to the moor‐related beetle associations indicated that Central European water beetles are also threatened by non‐successional factors, including desiccation, increased nitrogen input and/or mineralisation, and the loss of specific habitats. This trend to physiographical homogenisation resulted in corresponding community composition shifts. To effectively protect endangered species, conservation strategies need to be aimed at regularly creating new water bodies with mineralic bottom substratum, and maintenance of moor water bodies that represent late successional stages. KW - biodiversity KW - lentic inland water bodies KW - long‐term monitoring KW - time series KW - water beetles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214905 VL - 13 IS - 2 SP - 140 EP - 150 ER - TY - JOUR A1 - Thorn, Simon A1 - Chao, Anne A1 - Bernhardt-Römermann, Markus A1 - Chen, Yan-Han A1 - Georgiev, Kostadin B. A1 - Heibl, Christoph A1 - Müller, Jörg A1 - Schäfer, Hanno A1 - Bässler, Claus T1 - Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests JF - Ecology N2 - Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood‐inhabiting fungi, saproxylic beetles, and birds in a storm‐disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood‐inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities. KW - wood-inhabiting fungi KW - birds KW - bryophytes KW - climate change KW - forest succession KW - Hill numbers KW - natural disturbances KW - salvage logging KW - saproxylic beetles KW - vascular plants Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212378 VL - 101 IS - 3 ER - TY - JOUR A1 - Georgiev, Kostadin B. A1 - Chao, Anne A1 - Castro, Jorge A1 - Chen, Yan‐Han A1 - Choi, Chang‐Yong A1 - Fontaine, Joseph B. A1 - Hutto, Richard L. A1 - Lee, Eun‐Jae A1 - Müller, Jörg A1 - Rost, Josep A1 - Żmihorski, Michal A1 - Thorn, Simon T1 - Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities JF - Journal of Applied Ecology N2 - Salvage logging following natural disturbances may alter the natural successional trajectories of biological communities by affecting the occurrences of species, functional groups and evolutionary lineages. However, few studies have examined whether dissimilarities between bird communities of salvaged and unsalvaged forests are more pronounced for rare species, functional groups and evolutionary lineages than for their more common counterparts. We compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, covering a 17‐year period following wildfire or windstorm disturbances and subsequent salvage logging. We tested whether dissimilarities based on non‐shared species, functional groups and evolutionary lineages (a) decreased or increased over time and (b) the responses of rare, common and dominant species varied, by using a unified statistical framework based on Hill numbers and null models. We found that dissimilarities between bird communities caused by salvage logging persisted over time for rare, common and dominant species, evolutionary lineages and for rare functional groups. Dissimilarities of common and dominant functional groups increased 14 years post disturbance. Salvage logging led to significantly larger dissimilarities than expected by chance. Functional dissimilarities between salvaged and unsalvaged sites were lower compared to taxonomic and phylogenetic dissimilarities. In general, dissimilarities were highest for rare, followed by common and dominant species. Synthesis and applications. Our research demonstrates that salvage logging did not decrease dissimilarities of bird communities over time and taxonomic, functional and phylogenetic dissimilarities persisted for over a decade. We recommend resource managers and decision makers to reserve portions of disturbed forest to enable unmanaged post‐disturbance succession of bird communities, particularly to conserve rare species found in unsalvaged disturbed forests. KW - biodiversity KW - breeding season KW - forest management KW - harvesting KW - Hill numbers KW - natural disturbance KW - successional trajectory Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214887 VL - 57 IS - 6 SP - 1103 EP - 1112 ER - TY - JOUR A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Leverkus, Alexandro B A1 - Michler, Thomas A1 - Müller, Jörg A1 - Noss, Reed F A1 - Stork, Nigel A1 - Vogel, Sebastian A1 - Lindenmayer, David B T1 - The living dead: acknowledging life after tree death to stop forest degradation JF - Frontiers in Ecology and the Environment N2 - Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures. KW - forest degradation KW - biodiversity KW - deadwood Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218575 VL - 18 IS - 9 SP - 505 EP - 512 ER - TY - JOUR A1 - Leverkus, Alexandro B A1 - Gustafsson, Lena A1 - Lindenmayer, David B A1 - Castro, Jorge A1 - Rey Benayas, José María A1 - Ranius, Thomas A1 - Thorn, Simon T1 - Salvage logging effects on regulating ecosystem services and fuel loads JF - Frontiers in Ecology and the Environment N2 - Salvage logging, or logging after natural disturbances such as wildfires, insect outbreaks, and windstorms, is carried out to recover some of a forest's natural and/or economic capital. However, trade‐offs between management objectives and a lack of consensus on the ecological consequences of salvage logging impair science‐based decision making on the management of forests after natural disturbances. We conducted a global meta‐analysis of the impacts of salvage logging on regulating ecosystem services and on fuel loads, as a frequent post‐disturbance objective is preventing subsequent wildfires that could be fueled by the accumulation of dead trunks and branches. Salvage logging affected ecosystem services in a moderately negative way, regardless of disturbance type and severity, time elapsed since salvage logging, intensity of salvage logging, and the group of regulating ecosystem services being considered. However, prolonging the time between natural disturbance and salvage logging mitigated negative effects on regulating ecosystem services. Salvage logging had no overall effect on surface fuels; rather, different fuel types responded differently depending on the time elapsed since salvage logging. Delaying salvage logging by ~2–4 years may reduce negative ecological impacts without affecting surface fuel loads. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216111 VL - 18 IS - 7 SP - 391 EP - 400 ER -