TY - JOUR A1 - Taubenböck, H. A1 - Weigand, M. A1 - Esch, T. A1 - Staab, J. A1 - Wurm, M. A1 - Mast, J. A1 - Dech, S. T1 - A new ranking of the world's largest cities—Do administrative units obscure morphological realities? JF - Remote Sensing of Environment N2 - With 37 million inhabitants, Tokyo is the world's largest city in UN statistics. With this work we call this ranking into question. Usually, global city rankings are based on nationally collected population figures, which rely on administrative units. Sprawling urban growth, however, leads to morphological city extents that may surpass conventional administrative units. In order to detect spatial discrepancies between the physical and the administrative city, we present a methodology for delimiting Morphological Urban Areas (MUAs). We understand MUAs as a territorially contiguous settlement area that can be distinguished from low-density peripheral and rural hinterlands. We design a settlement index composed of three indicators (settlement area, settlement area proportion and density within the settlements) describing a gradient of built-up density from the urban center to the periphery applying a sectoral monocentric city model. We assume that the urban-rural transition can be defined along this gradient. With it, we re-territorialize the conventional administrative units. Our data basis are recent mapping products derived from multi-sensoral Earth observation (EO) data – namely the Global Urban Footprint (GUF) and the GUF Density (GUF-DenS) – providing globally consistent knowledge about settlement locations and densities. For the re-territorialized MUAs we calculate population numbers using WorldPop data. Overall, we cover the 1692 cities with >300,000 inhabitants on our planet. In our results we compare the consistently re-territorialized MUAs and the administrative units as well as their related population figures. We find the MUA in the Pearl River Delta the largest morphologically contiguous urban agglomeration in the world with a calculated population of 42.6 million. Tokyo, in this new list ranked number 2, loses its top position. In rank-size distributions we present the resulting deviations from previous city rankings. Although many MUAs outperform administrative units by area, we find that, contrary to what we assumed, in most cases MUAs are considerably smaller than administrative units. Only in Europe we find MUAs largely outweighing administrative units in extent. KW - city size KW - urban agglomeration KW - rank-size distribution KW - remote sensing KW - global urban footprint KW - urban morphology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240634 VL - 232 ER - TY - JOUR A1 - Staab, Thorsten E. M. A1 - Folegati, Paola A1 - Wolfertz, Iris A1 - Puska, Martti J. T1 - Stability of Cu-precipitates in Al-Cu alloys JF - Applied Sciences N2 - We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations. KW - aluminum copper alloys KW - Guinier-Preston zones KW - precipitates KW - ab initio calculations KW - DFT-LDA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176866 VL - 8 IS - 6 ER - TY - JOUR A1 - Gilbert, F. A1 - Eden, L. A1 - Meffert, R. A1 - Konietschke, F. A1 - Lotz, J. A1 - Bauer, L. A1 - Staab, W. T1 - Intra- and interobserver reliability of glenoid fracture classifications by Ideberg, Euler and AO JF - BMC Musculoskeletal Disorders N2 - Background: Representing 3%-5% of shoulder girdle injuries scapula fractures are rare. Furthermore, approximately 1% of scapula fractures are intraarticularfractures of the glenoid fossa. Because of uncertain fracture morphology and limited experience, the treatment of glenoid fossa fractures is difficult. The glenoid fracture classification by Ideberg (1984) and Euler (1996) is still commonly used in literature. In 2013 a new glenoid fracture classification was introduced by the AO. The purpose of this study was to examine the new AO classification in clinical practice in comparison with the classifications by Ideberg and Euler. Methods: In total CT images of 84 patients with glenoid fossa fractures from 2005 to 2018 were included. Parasagittal, paracoronary and axial reconstructions were examined according to the classifications of Ideberg, Euler and the AO by 3 investigators (orthopedic surgeon, radiologist, student of medicine) at three individual time settings. Inter- and intraobserver reliability of the three classification systems were ascertained by computing Inter- and Intraclass (ICCs) correlation coefficients using Spearman's rank correlation coefficient, 95%-confidence intervals as well as F-tests for correlation coefficients. Results: Inter- and intraobserver reliability for the AO classification showed a perspicuous coherence (R = 0.74 and R = 0.79). Low to moderate intraobserver reliability for Ideberg (R = 0.46) and Euler classification (R = 0.41) was found. Furthermore, data show a low Interobserver reliability for both Ideberg and Euler classification (R < 0.2). Both the Inter- and Intraclass reliability using AO is significantly higher than those using Ideberg and Euler (p < 0.05). Using the new AO classification, it was possible to find a proper class for every glenoid fossa fracture. On average, according to Euler classification 10 of 84 fractures were not classifiable whereas to Ideberg classification 21 of 84 fractures were not classifiable. Conclusion: The new AO classification system introduced 2013 facilitates reliable grading of glenoid fossa fractures with high inter- and intraobserver reliability in 84 patients using CT images. It should possibly be applied in order to enable a valid, reliable and consistent academic description of glenoid fossa fractures. The established classifications by Euler and Ideberg are not capable of providing a similar reliability. KW - classification KW - comparison KW - diagnosis KW - fracture KW - scapula Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176482 VL - 19 IS - 89 ER - TY - JOUR A1 - Staab, Wieland A1 - Hottowitz, Ralf A1 - Sohns, Christian A1 - Sohns, J.an Martin A1 - Gilbert, Fabian A1 - Menke, Jan A1 - Niklas, Andree A1 - Lotz, Joachim T1 - Accelerometer and Gyroscope Based Gait Analysis Using Spectral Analysis of Patients with Osteoarthritis of the Knee JF - Journal of Physical Therapy Science N2 - [Purpose] A wide variety of accelerometer tools are used to estimate human movement, but there are no adequate data relating to gait symmetry parameters in the context of knee osteoarthritis. This study's purpose was to evaluate a 3D-kinematic system using body-mounted sensors (gyroscopes and accelerometers) on the trunk and limbs. This is the first study to use spectral analysis for data post processing. [Subjects] Twelve patients with unilateral knee osteoarthritis (OA) (10 male) and seven age-matched controls (6 male) were studied. [Methods] Measurements with 3-D accelerometers and gyroscopes were compared to video analysis with marker positions tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). Data were recorded using the 3D-kinematic system. [Results] The results of both gait analysis systems were significantly correlated. Five parameters were significantly different between the knee OA and control groups. To overcome time spent in expensive post-processing routines, spectral analysis was performed for fast differentiation between normal gait and pathological gait signals using the 3D-kinematic system. [Conclusions] The 3D-kinematic system is objective, inexpensive, accurate and portable, and allows long-term recordings in clinical, sport as well as ergonomic or functional capacity evaluation (FCE) settings. For fast post-processing, spectral analysis of the recorded data is recommended. KW - accelerometer KW - gait KW - gyroscope Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121614 VL - 26 IS - 7 ER -