TY - JOUR A1 - Bittner, Stefan A1 - Bobak, Nicole A1 - Hofmann, Majella-Sophie A1 - Schuhmann, Michael K. A1 - Ruck, Tobias A1 - Göbel, Kerstin A1 - Brück, Wolfgang A1 - Wiendl, Heinz A1 - Meuth, Sven G. T1 - Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms JF - International Journal of Molecular Sciences N2 - Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs. KW - domain potassium channels KW - volume regulation KW - multiple-sclerosis KW - potassium channels KW - multiple sclerosis KW - ion channels KW - K+ channel KW - T lymphocytes KW - up-regulation KW - TASK2 KW - K2P channels KW - B cells KW - ph KW - K\(_{2P}\)5.1 KW - KCNK5 KW - autoimmune neuroinflammation KW - EAE Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151454 VL - 16 SP - 16880 EP - 16896 ER - TY - JOUR A1 - Hofmann, Reiner A1 - Völler, Heinz A1 - Nagels, Klaus A1 - Bindl, Dominik A1 - Vettorazzi, Eik A1 - Dittmar, Ronny A1 - Wohlgemuth, Walter A1 - Neumann, Till A1 - Störk, Stefan A1 - Bruder, Oliver A1 - Wegscheider, Karl A1 - Nagel, Eckhard A1 - Fleck, Eckart T1 - First outline and baseline data of a randomized, controlled multicenter trial to evaluate the health economic impact of home telemonitoring in chronic heart failure - CardioBBEAT JF - Trials N2 - Background: Evidence that home telemonitoring for patients with chronic heart failure (CHF) offers clinical benefit over usual care is controversial as is evidence of a health economic advantage. Methods: Between January 2010 and June 2013, patients with a confirmed diagnosis of CHF were enrolled and randomly assigned to 2 study groups comprising usual care with and without an interactive bi-directional remote monitoring system (Motiva\(^{®}\)). The primary endpoint in CardioBBEAT is the Incremental Cost-Effectiveness Ratio (ICER) established by the groups' difference in total cost and in the combined clinical endpoint "days alive and not in hospital nor inpatient care per potential days in study" within the follow-up of 12 months. Results: A total of 621 predominantly male patients were enrolled, whereof 302 patients were assigned to the intervention group and 319 to the control group. Ischemic cardiomyopathy was the leading cause of heart failure. Despite randomization, subjects of the control group were more often in NYHA functional class III-IV, and exhibited peripheral edema and renal dysfunction more often. Additionally, the control and intervention groups differed in heart rhythm disorders. No differences existed regarding risk factor profile, comorbidities, echocardiographic parameters, especially left ventricular and diastolic diameter and ejection fraction, as well as functional test results, medication and quality of life. While the observed baseline differences may well be a play of chance, they are of clinical relevance. Therefore, the statistical analysis plan was extended to include adjusted analyses with respect to the baseline imbalances. Conclusions: CardioBBEAT provides prospective outcome data on both, clinical and health economic impact of home telemonitoring in CHF. The study differs by the use of a high evidence level randomized controlled trial (RCT) design along with actual cost data obtained from health insurance companies. Its results are conducive to informed political and economic decision-making with regard to home telemonitoring solutions as an option for health care. Overall, it contributes to developing advanced health economic evaluation instruments to be deployed within the specific context of the German Health Care System. KW - mortality KW - home telemonitoring KW - metaanalysis KW - management KW - diagnosis KW - guidelines KW - ESC KW - chronic heart failure (CHF) KW - incremental cost-effectiveness ratio (ICER) KW - telemedicine KW - health economics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151429 VL - 16 IS - 343 ER - TY - JOUR A1 - Delgobo, Murilo A1 - Heinrichs, Margarete A1 - Hapke, Nils A1 - Ashour, DiyaaElDin A1 - Appel, Marc A1 - Srivastava, Mugdha A1 - Heckel, Tobias A1 - Spyridopoulos, Ioakim A1 - Hofmann, Ulrich A1 - Frantz, Stefan A1 - Ramos, Gustavo Campos T1 - Terminally Differentiated CD4\(^+\) T Cells Promote Myocardial Inflammaging JF - Frontiers in Immunology N2 - The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4\(^+\) T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4\(^+\) T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4\(^+\) T cell compartment was primarily composed of naïve cells defined as CCR7\(^+\)CD45RO\(^-\). However, when transplanted into young lymphocyte-deficient mice, CD4\(^+\) T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7\(^-\) CD45RO\(^+\)) and terminally-differentiated phenotypes (CCR7\(^-\)CD45RO\(^-\)), as typically seen in elderly. Differentiated CD4\(^+\) T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4\(^+\) T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4\(^+\) T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice. KW - CD4+ T-cells KW - myocardial aging KW - inflammaging KW - NSG animals KW - immunosenescence KW - lymphocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229612 SN - 1664-3224 VL - 12 ER -