TY - JOUR A1 - Mayr, Stefan A1 - Kuenzer, Claudia A1 - Gessner, Ursula A1 - Klein, Igor A1 - Rutzinger, Martin T1 - Validation of earth observation time-series: a review for large-area and temporally dense land surface products JF - Remote Sensing N2 - Large-area remote sensing time-series offer unique features for the extensive investigation of our environment. Since various error sources in the acquisition chain of datasets exist, only properly validated results can be of value for research and downstream decision processes. This review presents an overview of validation approaches concerning temporally dense time-series of land surface geo-information products that cover the continental to global scale. Categorization according to utilized validation data revealed that product intercomparisons and comparison to reference data are the conventional validation methods. The reviewed studies are mainly based on optical sensors and orientated towards global coverage, with vegetation-related variables as the focus. Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land surface variables. The hereby corresponding validation efforts show only minor methodological diversification in the past two decades. To sustain comprehensive and standardized validation efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences between measurement and the true state has to be maintained. The promotion of novel approaches can, on the other hand, prove beneficial for various downstream applications, although typically only theoretical uncertainties are provided. KW - accuracy KW - error estimation KW - global KW - intercomparison KW - remote sensing KW - uncertainty Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193202 SN - 2072-4292 VL - 11 IS - 22 ER - TY - JOUR A1 - Mayr, Stefan A1 - Klein, Igor A1 - Rutzinger, Martin A1 - Kuenzer, Claudia T1 - Systematic water fraction estimation for a global and daily surface water time-series JF - Remote Sensing N2 - Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series. KW - earth observation KW - landsat KW - MODIS KW - remote sensing KW - probability KW - Sentinel-2 KW - subpixel KW - water Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242586 SN - 2072-4292 VL - 13 IS - 14 ER - TY - JOUR A1 - Ziegler, Alice A1 - Meyer, Hanna A1 - Otte, Insa A1 - Peters, Marcell K. A1 - Appelhans, Tim A1 - Behler, Christina A1 - Böhning-Gaese, Katrin A1 - Classen, Alice A1 - Detsch, Florian A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Ferger, Stefan W. A1 - Fischer, Markus A1 - Gebert, Friederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Andreas A1 - Hemp, Claudia A1 - Kakengi, Victor A1 - Mayr, Antonia V. A1 - Ngereza, Christine A1 - Reudenbach, Christoph A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Schellenberger Costa, David A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Steffan-Dewenter, Ingolf A1 - Tardanico, Joseph A1 - Tschapka, Marco A1 - Vollstädt, Maximilian G. R. A1 - Wöllauer, Stephan A1 - Zhang, Jie A1 - Brandl, Roland A1 - Nauss, Thomas T1 - Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro JF - Remote Sensing N2 - The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results. KW - biodiversity KW - species richness KW - LiDAR KW - elevation KW - partial least square regression KW - arthropods KW - birds KW - bats KW - predictive modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262251 SN - 2072-4292 VL - 14 IS - 3 ER - TY - JOUR A1 - Mayr, Stefan A1 - Klein, Igor A1 - Rutzinger, Martin A1 - Kuenzer, Claudia T1 - Determining temporal uncertainty of a global inland surface water time series JF - Remote Sensing N2 - Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community. KW - Earth observation KW - interpolation KW - MODIS KW - optical remote sensing KW - probability KW - reliability KW - validation KW - variability Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245234 SN - 2072-4292 VL - 13 IS - 17 ER -