TY - JOUR A1 - Wiechmann, Tobias A1 - Röh, Simone A1 - Sauer, Susann A1 - Czamara, Darina A1 - Arloth, Janine A1 - Ködel, Maik A1 - Beintner, Madita A1 - Knop, Lisanne A1 - Menke, Andreas A1 - Binder, Elisabeth B. A1 - Provençal, Nadine T1 - Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus JF - Clinical Epigenetics N2 - Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure. KW - DNA methylation KW - FKBP5 KW - glucocorticoid receptor KW - early-life stress KW - targeted bisulfite sequencing KW - dexamethasone Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233673 VL - 11 ER - TY - JOUR A1 - Conrad, Thomas A1 - Albrecht, Anne-Susann A1 - Rodrigues de Melo Costa, Veronica A1 - Sauer, Sascha A1 - Meierhofer, David A1 - Andersson Ørom, Ulf T1 - Serial interactome capture of the human cell nucleus JF - Nature Communications N2 - Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present ‘serial RNA interactome capture’ (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)–RNA–protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA–RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs. KW - human cell nucleus KW - serial RNA interactome capture KW - RNA-binding proteins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166172 VL - 7 IS - 11212 ER -