TY - JOUR A1 - Adolfi, Mateus C. A1 - Du, Kang A1 - Kneitz, Susanne A1 - Cabau, Cédric A1 - Zahm, Margot A1 - Klopp, Christophe A1 - Feron, Romain A1 - Paixão, Rômulo V. A1 - Varela, Eduardo S. A1 - de Almeida, Fernanda L. A1 - de Oliveira, Marcos A. A1 - Nóbrega, Rafael H. A1 - Lopez-Roques, Céline A1 - Iampietro, Carole A1 - Lluch, Jérôme A1 - Kloas, Werner A1 - Wuertz, Sven A1 - Schaefer, Fabian A1 - Stöck, Matthias A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas) JF - Scientific Reports N2 - Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGF beta signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes. KW - evolutionary genetics KW - genetic markers KW - genome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265672 VL - 11 IS - 1 ER - TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Franchini, Paolo A1 - Jones, Julia C. A1 - Xiong, Peiwen A1 - Kneitz, Susanne A1 - Gompert, Zachariah A1 - Warren, Wesley C. A1 - Walter, Ronald B. A1 - Meyer, Axel A1 - Schartl, Manfred T1 - Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish JF - Nature Communications N2 - The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome. KW - evolutionary genetics KW - experimental evolution KW - genome evolution Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228396 VL - 9 ER - TY - JOUR A1 - Lu, Yuan A1 - Boswell, Wiliam A1 - Boswell, Mikki A1 - Klotz, Barbara A1 - Kneitz, Susanne A1 - Regneri, Janine A1 - Savage, Markita A1 - Mendoza, Cristina A1 - Postlethwait, John A1 - Warren, Wesley C. A1 - Schartl, Manfred A1 - Walter, Ronald B. T1 - Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model JF - Scientific Reports N2 - Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy. KW - bioinformatics KW - phenotypic screening Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237322 VL - 9 ER - TY - JOUR A1 - Lübcke, Paul M. A1 - Ebbers, Meinolf N. B. A1 - Volzke, Johann A1 - Bull, Jana A1 - Kneitz, Susanne A1 - Engelmann, Robby A1 - Lang, Hermann A1 - Kreikemeyer, Bernd A1 - Müller-Hilke, Brigitte T1 - Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss JF - Scientific Reports N2 - Recent studies indicate a causal relationship between the periodontal pathogen P. gingivalis and rheumatoid arthritis involving the production of autoantibodies against citrullinated peptides. We therefore postulated that therapeutic eradication P. gingivalis may ameliorate rheumatoid arthritis development and here turned to a mouse model in order to challenge our hypothesis. F1 (DBA/1 x B10.Q) mice were orally inoculated with P. gingivalis before collagen-induced arthritis was provoked. Chlorhexidine or metronidazole were orally administered either before or during the induction phase of arthritis and their effects on arthritis progression and alveolar bone loss were compared to intraperitoneally injected methotrexate. Arthritis incidence and severity were macroscopically scored and alveolar bone loss was evaluated via microcomputed tomography. Serum antibody titres against P. gingivalis were quantified by ELISA and microbial dysbiosis following oral inoculation was monitored in stool samples via microbiome analyses. Both, oral chlorhexidine and metronidazole reduced the incidence and ameliorated the severity of collagen-induced arthritis comparable to methotrexate. Likewise, all three therapies attenuated alveolar bone loss. Relative abundance of Porphyromonadaceae was increased after oral inoculation with P. gingivalis and decreased after treatment. This is the first study to describe beneficial effects of non-surgical periodontal treatment on collagen-induced arthritis in mice and suggests that mouthwash with chlorhexidine or metronidazole may also be beneficial for patients with rheumatoid arthritis and a coexisting periodontitis. Methotrexate ameliorated periodontitis in mice, further raising the possibility that methotrexate may also positively impact on the tooth supporting tissues of patients with rheumatoid arthritis. KW - rheumatic diseases KW - rheumatology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237355 VL - 9 ER -